現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:Application of Frequent Itemset Mining for Travel Package Design [以論文名稱查詢館藏系統]
論文英文名稱:Application of Frequent Itemset Mining for Travel Package Design [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:管理學院
系所名稱:管理國際學生碩士專班 (IMBA)
畢業學年度:99
出版年度:100
中文姓名:阿爾峰畢利格
英文姓名:Sukhbaatar Arvinbileg
研究生學號:98988002
學位類別:碩士
語文別:英文
口試日期:2011-06-15
論文頁數:32
指導教授中文名:吳建文
口試委員中文名:陳育威;杜壯
中文關鍵詞:Frequent Itemset MiningData miningTravel Package Design
英文關鍵詞:Frequent Itemset MiningData miningTravel Package Design
論文中文摘要:Travel package design is an important weapon for travel agencies to improve competitiveness. In this study, we present a novel approach for travel package design. We first use a questionnaire to understand customers’ interests. Then we employ frequent itemset mining to identify common components in the questionnaire that are favored concurrently by customers. The discovered frequent itemsets are good candidates for travel package design. The results are valuable for travel agencies in Taiwan.
論文英文摘要:Travel package design is an important weapon for travel agencies to improve competitiveness. In this study, we present a novel approach for travel package design. We first use a questionnaire to understand customers’ interests. Then we employ frequent itemset mining to identify common components in the questionnaire that are favored concurrently by customers. The discovered frequent itemsets are good candidates for travel package design. The results are valuable for travel agencies in Taiwan.
論文目次:Abstract.…………….……………………………………………..……….II
Acknowledgement...……………………………………………………….IV
List of Tables..……………………………………………………………...VI
List of Figures..…………………………………………………………….VII
Chapter One INTRODUCTION ...…………………………………….…1
1.1Purpose of the Study…………………………………………………….1
1.2Research Procedure ……………………………………………………..3
1.3Structure of the Study…………………………………………………...4
Chapter Two LITERATURE REVIEW ………………………………..5
2.1 Data Mining …………………………………………………………..5
2.2 Frequent Itemset Mining ……………………………………………...6
2.3 Apriori Algorithm …………………………………………………….9
Chapter Three QUESTIONNAIRE DEVELOPMENT AND DESIGN...13
3.1 Research Framework..…………………………………………………13
3.2 Questionnaire Design..…………………………………………………14
3.3 Data Collection ………………………………………………………..14
Chapter Four RESULTS AND DATA ANALYSIS .……………………16
4.1 Response Rate ………………………………………………………...16
4.2 The High – Frequency Travel Packages …....…………………………17
Chapter Five CONCLUSION AND SUGGESTIONS ………………….23
5.1 Conclusion …………………………………………………………….23
5.2 Suggestions for Further Research …………………………………….24
References ………………………………………………………………….26
APPENDIX
Questionnaire
論文參考文獻:[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proceedings of VLDB’94, pages 487–499,1994.
[2] ChienwenWu . Applying frequent itemset mining to identify a small itemset that satisfies a large percentage of orders in a warehouse. In Computers & Operations Research, pages 2 – 11, 2006.
[3] Post GV. Database management systems: Designing and building business applications. McGraw-Hill, Irwin, pages 57-68. 2005.
[4] Thrane C. Hedonic price models and sun-and-beach package tours. In The Norwegian case, pages 302–308. 2005.
[5] Al-Salim B. Data mining application in designing popular and optimal travel packages. In Proceedings of the IEEE International Conference on Electro Information Technology, Lincoln, NE. pages 110-115, 2005.
[6] R. J. Bayardo, Jr. Efficiently mining long patterns from databases. In Proceedings of ACM SIGMOD’98, pages 85–93, 1998.
[7] G. Grahne and J. Zhu. High performance mining of maximal frequent itemsets. In SIAM’03 Workshop on High Performance Data Mining: Pervasive and Data Stream Mining, May 2003.
[8] B. Sukhbaatar. English-Mongolian Dictionary of Information and Communication Technology. Oct. 2007.
[9] Michael Hahsler and Kurt Hornik. New Probabilistic Interest Measures for
Association Rules. In Intelligent Data Analysis, volume 11, pages 437–455, 2007.
[10] Gabor Melli. Dataset Generator. http://www.datasetgenerator.com, last called in 18.12.2010.
[11] Microsoft. SQL Server 2005 Data Mining Tutorial. http://msdn2.microsoft.com/en-us/library/ms167167.aspx, last called in 18.01.2011.
[12] J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining top-k frequent closed patterns without minimum support. In Proceedings of ICDM’02, pages 211–218, Dec. 2002.
[13] J. Wang, J. Han, and J. Pei. Closet+: Searching for the best strategies for mining frequent closed itemsets. In Proceedings of ACM SIGKDD’03, Washington, DC, 2003.
論文全文使用權限:同意授權於2012-07-13起公開