現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:應用於P2P網路之多因子信賴模型 [以論文名稱查詢館藏系統]
論文英文名稱:The Trust Model of Multiple Factors for Peer-to-Peer Networks [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:管理學院
系所名稱:資訊與運籌管理研究所
畢業學年度:100
出版年度:101
中文姓名:張馨方
英文姓名:Hsin-Fang Chang
研究生學號:99938001
學位類別:碩士
語文別:中文
口試日期:2012-06-28
論文頁數:49
指導教授中文名:陳育威
口試委員中文名:黃其彥;陳德釧
中文關鍵詞:信賴模型信賴評估P2P網路安全
英文關鍵詞:trust modeltrust evaluationPeer-to-Peernetwork security
論文中文摘要:隨著網際網路蓬勃發展,越來越多人透過網路互相分享資源,致使近年來點對點技術(Peer-to-peer, P2P)軟體相當盛行。在P2P環境下,檔案提供者或接收者皆被視為節點,並透過點對點技術有效地分享資源。然而,所有用戶節點均可使用匿名身份分享資源,卻無需為上傳的檔案內容負責,讓某些用戶節點透過各種漏洞進行惡意行為,破壞了整個網路的服務品質。有鑑於此,P2P網路安全的問題更顯重要。
本論文提出應用於P2P網路之多因子信賴模型(The Trust Model of Multiple Factors for Peer-to-Peer Networks, MFTM),結合多個因子去計算每一節點之信賴值,其考慮的因子包含歷史因子、回饋因子、貢獻因子、風險因子及懲處因子,本論文從這些因子中進一步探討節點的多種惡意行為,並透過不同觀點進行運算,最後結合這些因子再予以權重分配,計算出提供者(上傳節點)之信賴值,並提供使用者(下載節點)遴選具高信賴度之節點,本論文將透過該模型賴以避免多種惡意行為的產生,預期提高檔案下載成功率及有效抑止節點之惡意行為,如:勾結、叛徒、挾怨報復、不真實檔案下載、過度放大本身評價與重複給予評價等問題,進而提升網路的服務品質。
論文英文摘要:With internet booming, the peer-to-peer applications have become very popular in recent years. More and more people share resource with each other through the peer-to-peer platform. In the P2P environment, all nodes share resource with identities as anonymous users, and don’t need to account for the file content they upload. As a result, some nodes do some malicious works through this leak, so that the service quality of internet is reduced. In this thesis, we design “The Trust Model of Multiple Factors” to calculate the trust value of each node with multiple factors. Each node can choose a node with high trust value to get resource what it wants. By applying the proposed model, not only many malicious behaviors can be avoided, but also the success rate can be increased.
論文目次:目錄

摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 V
圖目錄 VI
第一章 緒論 1
第二章 文獻回顧 3
第三章 多因子信賴模型 8
3.1 運作流程與系統架構 9
3.2 因子與公式介紹 11
3.2.1 歷史因子 12
3.2.2 回饋因子 14
3.2.3 懲處因子 18
3.2.4 貢獻因子 20
3.2.5 風險因子 22
3.3 信賴值公式 22
第四章 模擬與效能評估 24
4.1 基本模擬的建置 24
4.2 實驗參數 26
4.3 評估指標 29
4.3.1 交易成功率 29
4.3.2交易成功改善率 39
4.3.3 有無使用MFTM之不正確檔案下載次數 42
4.3.4不正確檔案下載次數之改善率 45
第五章 結論 47
參考文獻 48


表目錄

表3.1 符號說明 11
表4.1 實驗參數 26
表4.2 齊夫定律之檔案分佈機率表 27
表4.3 五組MFTM信賴因子之權重 29
表4.4 好壞節點比例20/80與Zipf θ值0.6之交易成功改善率 39
表4.5 以20/80之好壞節點比例下不正確檔案下載次數之改善率 46


圖目錄

圖2.1 五個元組之間的關聯 4
圖2.2 節點的異質結構 4
圖2.3 P-Trust的架構 5
圖3.1 MFTM流程圖 9
圖3.2 MFTM架構圖 11
圖3.3 歷史因子之範例 14
圖3.4 回饋因子之正確回饋範例 17
圖3.5 回饋因子之錯誤回饋範例 18
圖3.6 懲處因子之範例 20
圖3.7 貢獻因子之範例 21
圖4.1 齊夫定律之檔案分佈機率 27
圖4.2 好壞節點比例20/80與Zipf θ值0.4之交易成功率 30
圖4.3 好壞節點比例20/80與Zipf θ值0.6之交易成功率 31
圖4.4 好壞節點比例20/80與Zipf θ值0.8之交易成功率 31
圖4.5 好壞節點比例20/80與Zipf θ值1之交易成功率 32
圖4.6 好壞節點比例40/60與Zipf θ值0.4之交易成功率 33
圖4.7 好壞節點比例40/60與Zipf θ值0.6之交易成功率 33
圖4.8 好壞節點比例40/60與Zipf θ值0.8之交易成功率 34
圖4.9 好壞節點比例40/60與Zipf θ值1之交易成功率 34
圖4.10 好壞節點比例60/40與Zipf θ值0.4之交易成功率 35
圖4.11 好壞節點比例60/40與Zipf θ值0.6之交易成功率 35
圖4.12 好壞節點比例60/40與Zipf θ值0.8之交易成功率 36
圖4.13 好壞節點比例60/40與Zipf θ值1之交易成功率 36
圖4.14 好壞節點比例80/20與Zipf θ值0.4之交易成功率 37
圖4.15 好壞節點比例80/20與Zipf θ值0.6之交易成功率 37
圖4.16 好壞節點比例80/20與Zipf θ值0.8之交易成功率 38
圖4.17 好壞節點比例80/20與Zipf θ值1之交易成功率 38
圖4.18 不同好壞節點比例與Zipf θ值0.4之交易成功改善率 40
圖4.19 不同好壞節點比例與Zipf θ值0.6之交易成功改善率 40
圖4.20 不同好壞節點比例與Zipf θ值0.8之交易成功改善率 41
圖4.21 不同好壞節點比例與Zipf θ值1之交易成功改善率 41
圖4.22 好壞節點比例20/80之不正確檔案下載次數 42
圖4.23 好壞節點比例40/60之不正確檔案下載次數 43
圖4.24 好壞節點比例60/40之不正確檔案下載次數 43
圖4.25 好壞節點比例80/20之不正確檔案下載次數 44
圖4.26 不同好壞節點比例下不正確檔案下載次數之改善率 46
論文參考文獻:[1] S. D. Kamvar, M. T. Schlosser and H. Garcia-Molina, “The Eigen Trust algorithm for reputation management in P2P networks,” in Proceedings of the 12th International World Wide Web Conference, pp. 640-651, 2003.
[2] R. Chen, X. Zhao, L. Tang, J. Hu and Z. Chen, “CuboidTrust: a global reputation-based trust model in peer-to-peer networks,” Fourth Int. Conf. on autonomic and Trusted Computing, pp. 203-215, 2007.
[3] X. Li and L. Liu, “PeerTrust: supporting reputation-based trust for peer-to-peer electronic communities,” IEEE Transactions on Knowledge and Data Engineering, Vol. 16, No. 7, pp. 843-857,2004.
[4] R. Zhou and K. Hwang, “PowerTrust: A robust and scalable reputation system for trusted P2P computing,” IEEE Transactions on Parallel and Distributed Systems, pp. 460-473, 2007.
[5] S. Peng, J. He and Y. Meng, “Reputation-based trust update in network environment,” in 2008 International Symposium on Electronic Commerce and Security, pp. 118-123, 2008.
[6] C. Zuo, J. Zhou and H. Feng, “A novel multi-level trust model to improve the security of P2P networks,” in 2010 3rd IEEE International Conference on Computer Science and Information Technology(ICCSIT), pp.100-104, 2010.
[7] X. Li, F. Zhou and X. Yang, “A multi-dimensional trust evaluation model for large-scale P2Pcomputing,”Journal of Parallel and Distributed Computing, pp. 188-193, 2011.
[8] Y. Wang and J. Vassileva, “Bayesian network trust model in peer-to-peer networks,” Proc. Of the Workshop on “Deception, Fraud and Trust in Agent Societies” at the Autonomous Agents and Multi Agent Systems. LNCS 2872, Berlin: Springer-Verlag, pp. 23-34, 2003.
[9] Z. Hu, H. Lin and Y. Zhou, “A fuzzy reputation management system with punishment mechanism for P2Pnetwork,” Journal of Networks, VOL. 6, No. 2, pp. 190-197, 2011.
[10] S. Chen, Y. Zhang and G. Yang, “Parameter-estimation based trust model for unstructured peer-to-peer networks,” IET Communications, VOL. 5, lss. 7, pp. 922-928, 2010.
[11] W. Li, L. Ping, K. Lu and X. Chen, “Trust model of users’ behavior in trustworthy internet,” in Proceedings of IEEE WASE International Conference on Information Engineering (ICIE), pp. 403-406, 2009.
[12] Z. W. Yu, Q. G. Shen and J. Liu, “A trust evaluation approach of P2P nodes based on trust computing,”12th IEEE International Conference on Communication Technology (ICCT), pp. 1088-1091, 2010.
[13] S. Zeng, X. Yang, Y. Yang and Z. M. Hu, “TM-RMRP: A trust model based on a recommendation mechanism of rewards and punishments,”2010 Second International Workshop on Education Technology and Computer Science(ETCS), pp. 31-34, 2010.
[14] Z. Zhang, X. M. Wang and Y. X. Wang, “A P2P global trust model based on recommendation,” Proceedings of 2005 International Conference on Machine Learning and Cybernetics, VOL. 7, pp.3975-3980, 2005.
[15] B. Wang, J. Wu, S. Zhang and D. Li, “Research on single-domain multi-factor trust model in p2p system,” International Conference on Computer Application and System Modeling (ICCASM), pp.533-537, 2010.
[16] B. Cohen, “Incentives build robustness in BitTorrent,” Proceedings of First Workshop on Economics of Peer-to-Peer System, Berkeley, CA, 2003.
[17] H. Lee, S. Lee, H. Kim and H. Bahn, “Personalized Recommendation Schemes for DTV Channel Selectors,” IEEE Transactions on Consumer Electronics, Vol. 52, pp. 1064-1068, 2006.
論文全文使用權限:同意授權於2020-01-01起公開