現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:基於社群網站之手持裝置個人化餐廳推薦系統 [以論文名稱查詢館藏系統]
論文英文名稱:A Personalized Restaurant Recommendation System for Mobile Devices Based on Social Networks [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:管理學院
系所名稱:資訊與運籌管理研究所
畢業學年度:101
出版年度:102
中文姓名:張碩庭
英文姓名:Shuo-Ting Chang
研究生學號:100938004
學位類別:碩士
語文別:英文
口試日期:2013-07-03
論文頁數:37
指導教授中文名:翁頌舜
指導教授英文名:Sung-Shun Weng
口試委員中文名:吳瑞堯;蕭瑞祥
口試委員英文名:Ruei-Yao Wu;Ruei-Siang Hsiao
中文關鍵詞:個人化餐廳推薦手持裝置餘弦相似度情境
英文關鍵詞:Personalized Restaurants RecommendationMobile DeviceCosine SimilaritySituation
論文中文摘要:現代每個人使用智慧型手機在Youtube上看電影、登入Facebook來打卡等。我們也利用手機應用程式來使我們生活更便利。每當和朋友或家人吃飯時,總會遇到決定要吃哪家餐廳比較好的困難。有很多關於餐廳推薦的應用程式,但沒有個人化推薦餐廳。本研究建構一個手機應用程式,利用使用者和使用者的朋友們打卡資料來推薦高評價的餐廳。
首先,我們先收集使用者在Facebook的打卡資料,接著使用餘弦相似度法計算使用者朋友們和使用者的相似度。我們找到K個相似朋友的打卡餐廳列表將會成為相似推薦列表。第二,使用者可以鍵入他們對於價錢和時段的選擇來當作篩選條件。本研究也利用定位系統來找到使用者附近的餐廳。結合相似度及地點為基礎的推薦列表,並利用權重公式來排序,推薦餐廳給使用者。
論文英文摘要:Nowadays, everyone uses smartphones to watch films on the Youtube, to login Facebook to Check-in, etc. We also use applications to facilitate our life. Every time we discuss what to eat with our friends or families, we will have troubles to decide which restaurants to eat in. There are hundreds of applications about restaurant recommendation in the real world, but no one provides personalized recommendation. This study constructs a mobile application using persons and their friends’ Facebook Check-in data to recommend more satisfied restaurants.
We first collect users’ data on the Facebook then calculate the similarity of users’ friends by using Cosine similarity measure. After we find K similar friends of the user, the K friends’ Check-in restaurants will be in the recommendation list. Second, users can type in their conditions about price, period as situation parameters. We use the positioning system to find a list of restaurants around users. Our combined recommendation lists include similar recommendation lists and location-based recommendation lists. Then we use our weight formula to order and recommend the combined list to users.
論文目次:ABSTRACT II
摘要 III
Catalogue IV
Table Catalogue VI
Figure Catalogue VII
Chapter1.INTRODUCTION 1
1.1Research Background and Motivation 1
1.2Purpose 2
1.3Thesis Structure 3
Chapter2.RELATED WORK 4
2.1Facebook 4
2.2Facebook Check-in Behavior 4
2.3Restaurant Recommendation 5
2.4Situation 5
2.5Cosine Similarity 6
Chapter3.THE RESERCH METHODS 7
3.1Research Architecture 7
3.2Data Preprocessing 8
3.2.1Facebook Data 8
3.2.2iPeen Restaurant Data 9
3.2.3Data Mapping 10
3.3Data Analysis 11
3.4Cosine Similarity 13
3.5Situation Recommendation Model 14
3.5.1Location-Based Recommendation List 14
3.5.2Similarity Recommendation List 15
3.5.3Situation Recommendation 15
Chapter4.IMPLEMENTATION 17
4.1The First Implement Result 17
4.2The Second Implement Result 24
4.3The Third Implement Result 27
4.4The Evaluation 28
Chapter5.CONCLUSION 32
5.1Conclusion 32
5.2Limitations and Future Prospect 32
REFERENCES 34
Appendix:Questionnaire 36
論文參考文獻:1.Akcora, C. G. and Carminati, B., “Network and Profile Based Measures for User Similarities on Social Networks,” Information Reuse and Integration (IRI), 2011.
2.Abu-Nimeh, S., Chen, T. M. and Alzubi, O., “Malicious and spam posts in online social networks,” In Proceedings of Computing & Processing (Hardware/Software), 2011, pp. 23-28.
3.Bhattacharyya, P., Garg, A. and Wu, F., “Social Network Model based on Keyword Categorization,” Advances in Social Network Analysis and Mining, 2009.
4.Fan-Jiang, Y. L., “A Restaurant Recommendation System on Facebook,” National Hsinchu University of Education International Students Services academic dissertation, 2012.
5.Guo, Y. C., “A Context-aware and Social Graph based Restaurant Recommender System for Mobile Devices,” NTU Department of Engineering Science and Ocean Engineering academic dissertation, 2012.
6.Gomes, A. K. and Pimentel, M. D. G. C., “Social Interactions Representation as Users Behavioral Contingencies and Evaluation in Social Networks,” The Fifth IEEE International Conference on Semantic Computing (ICSC), 2011, pp. 275-278.
7.Huang, C. C., “Impact Analysis of Contextual Information in a Mobile Restaurant Recommender System,” Taiwan University, 2009.
8.Ho, H. Y. and Pan, H. Y., “Use Behaviors and Website Experiences of Facebook Community,” 2010 International Conference on Electronics and Information Engineering (ICEIE), Vol. 1, 2010, pp. 379-383.
9.Hsieh, H. P., Li, C. T. and Lin, S. D., “Exploiting Large-Scale Check-in Data to Recommend Time-Sensitive Routes,” UrbComp '12 Proceedings of the ACM SIGKDD International Workshop on Urban Computing, 2012, pp. 55-62.
10.Kuo, W. T., Kuo, Y. L., Hsu, Y. J. and Tsai, T. H., “Contextual Restaurant Recommendation Utilizing Implicit Feedback,” The 26th Annual Conference of the Japanese Society for Articial Intelligence, 2012.
11.Lucas, B. and Carlson, J., “Exploring Factors Affecting Mobile Social Media Interactions within Service Environments: A Theoretical Framework,” University of Newcastle, 2012.
12.Lucas, B. and Carlson, J., “Understanding e-WOM Influence using Social Location Based Services: Qualitative Evidence from Service Encounters,” University of Newcastle, 2012.
13.Martinez, L., Rodriguez, R. M. and Espinilla, M., “REJA: A Geo-referenced hybrid recommender system for restaurants,” Web Intelligence and Intelligent Agent Technologies, Vol. 3, 2009, pp. 187-190.
14.Mui, L., Szolovits, P. and Ang, C., “Collaborative Sanctioning: Applications in Restaurant Recommendations Based on Reputation,” AGENTS '01 Proceedings of the fifth international conference on Autonomous agents, 2001, pp. 118-119.
15.Park, M. H., Park, H. S. and Cho, S. B., “Restaurant Recommendation for Group of People in Mobile Environments Using Probabilistic Multi-criteria Decision Making,” Computer-Human Interaction, Lecture Notes in Computer Science, Vol. 5068, 2008, pp. 114-122.
16.Qi, G. J., Aggarwal, C., Qi, T., Ji, H. and Huang, T. S., “Exploring Context and Content Links in Social Media: A Latent Space Method,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 34, No. 5, 2012, pp. 850-862.
17.Richins, M. L. and Root-Shafer, T., “The role of involvement and opinion leadership in consumer word-of-mouth: An implicit model made explicit,” Advances in Consumer Research, 1988, pp. 32-36.
18.Schilit, B. N. and Theimer, M. M., “Disseminating active map information to mobile hosts,” IEEE Network, Vol. 8, No. 9, 1994, pp. 22-32.
19.Srinivas, G. R., Tandon, N. and Varma, V., “A Weighted Tag Similarity Measure Based on a Collaborative Weight Model,” Search and Mining User-Generated Contents, 2010, pp. 79-86.
20.Spertus, E., Sahami, M. and Buyukkokten, O., “Evaluating Similarity Measures: A Large-Scale Study in the Orkut Social Network,” In Proceedings of the eleventh ACM SIGKDD International Conference on Knowledge discovery in data mining, 2005, pp. 678-684.
21.Sadeh, N. M., Chan, E. and Van, L., “MyCampus: An Agent-Based Environment for Context-Aware Mobile Services,” In proceedings of AAMAS First International Joint Conference on Autonomous Agents and Multi-Agent Systems, 2002.
22.Tung, H. W., “A Personalized Restaurant Recommender Agent for Mobile E-Service,” E-Technology, E-Commerce and E-Service, 2004, pp. 259-262.
23.Thorsten, H. T., Gwinner, K. P., Walsh, G. and Gremler, D. D., “Electronic Word-of-Mouth Via Consumer-Opinion Platforms: What Motivates Consumers to Articulate Themselves on The Internet? ,” Journal of Interactive Marketing, Vol. 18, No. 1, 2004, pp. 38-52.
24.Ying, J. C., Lu, H. C., Kuo, W. N. and Tseng, S., “Urban Point-of-Interest Recommendation by Mining User Check-in Behaviors,” UrbComp '12 Proceedings of the ACM SIGKDD International Workshop on Urban Computing, 2012, pp. 63-70.
25.Zanda, A., Menasalvas, E. and Eibe, S., “A social network activity recommender system for ubiquitous devices,” The 11th International Conference on Intelligent Systems Design and Applications (ISDA), 2011, pp. 493-497.
論文全文使用權限:同意授權於2013-08-13起公開