現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:改良式電解去離子系統電流提升技術之研究 [以論文名稱查詢館藏系統]
論文英文名稱:A Study on the Improvement of Electric Current Efficiency by Modified Electro-deionization System [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:環境規劃與管理研究所
中文姓名:曲凱樂
英文姓名:Kai-Le Chu
研究生學號:94608011
學位類別:碩士
語文別:中文
口試日期:2007-07-05
論文頁數:81
指導教授中文名:張添晉
口試委員中文名:陳孝行;周珊珊;莊順興
中文關鍵詞:EDI電滲析離子交換樹脂濃度極化
英文關鍵詞:Electro-deionizationElectrodialysisIon-exchange resinPolarization
論文中文摘要:EDI(Electro-deionization)技術,或稱電脫鹽、電解去離子技術,為近年來出現的一項創新之高/超純水製造技術,將傳統電滲析技術和離子交換技術加以結合,既克服電透析不能深度脫鹽的缺點,又彌補離子交換不能連續工作、需消耗酸鹼再生之缺點,此等顯著優勢使得該技術於各個行業得以迅速地被推廣及應用。
電解去離子技術屬一種操作成本昂貴的系統,乃導因於長電導距離及濃度極化現象,即使脫鹽室中已有填充離子交換樹脂來增加水中的導電性,但目前電解去離子技術尚需消耗相當多電力,因此本研究將著重系統中電流效率之改善,以達增加脫鹽效率及降低電量消耗之目的。
本研究利用自行設計之模組,填充增加導電性之物質(如:活性碳),以不同填充方式,包括:模組中不填充物質、模組脫鹽端填充活性碳、模組脫鹽端填充離子交換樹脂、模組濃縮端填充活性碳及模組脫鹽端填充活性碳加上濃縮端填充離子交換樹脂,在不同電壓下探討其電流提升及脫鹽效果。
利用本研究擬定之二項指標判定實驗結果顯示,模組濃縮端填充活性碳之脫鹽端導電度脫鹽效果為99.7%,而模組無填充則為98.95%,但對於另一指標電流提升兩者卻是相同,顯示以濃縮端填充活性碳之脫鹽效果最佳,但電流未有顯著提升,原因可能為本實驗為批次循環,未能模擬實場上之實際情形,因此將模組濃縮端填充活性碳以連續脫鹽情況下運作,且與模組無填充相比較,得知以連續操7小時作情況下,模組濃縮端填充活性碳之脫鹽效果及電流提升均較模組無填充佳,在脫鹽端導電度以模組濃縮端填充活性碳之30~31 μs/cm較模組無填充之36~37 μs/cm來得佳,在電流方面,前者最終電流0.243 A較後者0.137 A高出將近一倍,所以推論此填充方式卻實可有效降低脫鹽端導電度及提升模組電流效果。
論文英文摘要:EDI(Electro-deionization)is an innovation made of ultra pure water technology in present year. It is combined of electro dialysis and ion-exchange technology. Therefore, to overcome the drawback of electro dialysis, deep desalination and make up for ion-exchange technology can not continuously work and need chemicals to regenerate the ion-exchange resin, the superiority of those make this technology to be used more popularly and applied rapidly.
EDI technology belongs to cost expensive operation system, because of long electricity distance and concentrate polarization phenomenon. Even already filled with ion-exchange resins in module to enhance the conductivity, it still consume a lot of energy, consequently, this study is focused to improve the module of electricity efficiency, for the purpose of enhancing the desalination efficiency and reduce the power consumption.
The module in this study is self-designed, filled with materials that could enhance the electric conduction (eg. Active carbon), use different mode of filled, include non filled in the module, filled with ion-exchange resins at dilute compartment in the module, filled with active carbon at concentrate compartment in the module and ion-exchange resins at dilute compartment in the module.
Used two index made by myself during the research to judge the results of this study, one is to observe the electric conductivity efficiency, another is for the promotion of electricity, the results showed the module filled with active carbon at concentrate compartment that electric conductivity is 99.7 %, another non filled in the module is 98.95 %, but the electricity conductivity is the same, the meaning of this is that, the module filled with active carbon at concentrate compartment is superior, but not remarkable for electricity conduction, maybe the reson is the experiment is batch recycle and can not imitate the real case that is continuous process, for this reason, compared with module filled with active carbon at concentrate compartment and non filled in continuous 7 hours operate situation, get module filled with active carbon at concentrate compartment superior to non filled on desalination efficiency and improve electricity efficiency in continuous operate situation, the experiment show the module filled with active carbon at concentrate compartment that electric conductivity 30~31 μs/cm and better than the module with non filled 36~37 μs/cm, the final current 0.243 A and 0.137 A respectively, inference that reduce electric conductivity at dilute compartment indeed and improve the electric efficiency.
論文目次:中文摘要 I
英文摘要 III
誌 謝 V
表目錄 X
圖目錄 XI
第一章 前言 1
1.1研究源起 1
1.1.1研究動機 1
1.1.2研究目的 2
1.2研究內容 3
1.2.1研究方法與流程 3
1.2.2 研究架構 4
第二章 文獻回顧 5
2.1電解去離子系統之背景介紹 5
2.1.1 電透析、倒極式電透析、電解去離子技術簡介 5
2.1.2 電解去離子系統之全球專利概況 6
2.1.3 電解去離子系統發展歷史 11
2.1.4 電解去離子系統操作理論 12
2.1.5 電解去離子系統優缺點 14
2.2純水系統技術介紹 16
2.2.1傳統混合離子交換系統與電解去離子系統技術比較 16
2.2.2 創新電解去離子系統模組 21
2.2.3電解去離子系統之超純水應用 23
2.3電解去離子系統影響因子探討 25
2.3.1 操作電壓 25
2.3.2 操作電流 27
2.3.3 離子種類 30
2.3.4 離子交換樹脂 32
2.3.5 操作溫度 34
2.3.6 操作流量 36
2.3.7 導電度及產水水質 37
第三章 實驗設備與方法 41
3.1實驗設備與材料 41
3.1.1改良式電解去離子設備 41
3.1.2 離子交換樹脂 45
3.1.3 粒狀活性碳 45
3.1.4電極材料與電源供應器 46
3.1.5其它儀器設備 47
3.2實驗分析方法 47
3.2.1分析方法 47
3.2.2 實驗方法 50
3.3實驗模組填充方式及簡稱 51
3.4 品保與品管 52
3.4.1 實驗室分析之品保與品管 52
3.4.2 數據品保工作項目及執行方法 52
第四章 結果與討論 53
4.1電流提升及導電度影響之探討 53
4.1.1 不填充物質對電流效率與導電度之影響 53
4.1.2 脫鹽端填充活性碳對電流效率與導電度之影響 55
4.1.3 濃縮端填充活性碳對電流效率與導電度之影響 57
4.1.4 脫鹽端填充離子交換樹脂對電流效率與導電度之影響 59
4.1.5 濃縮端填充活性碳及脫鹽端填充離子交換樹脂對電流效率與導電度之影響 61
4.2 各填充方式之離子去除效果比較 63
4.2.1 不同電壓下對陽離子去除效果 63
4.2.2 不同電壓下對陰離子去除效果 66
4.3 綜合討論 69
4.3.1 指標之定義及說明 69
4.3.2 電流提升及導電度之變化 69
4.3.3 各模組之導電度與時間比較 70
4.3.4 各模組之電流與時間比較 72
4.3.5 比較批次循環中第一批之去除率、電流及出水導電度 73
4.3.6 模組濃縮瑞填充活性碳 – 連續處理方式 75
第五章 結論與建議 77
5.1結論 77
5.2建議 78
參考文獻 79
論文參考文獻:[1] 王方,離子交換樹脂的電再生法.台北:膜科學與技術,2002,第22卷,第6期:第9-13頁。
[2] 林朝香,「地下鹼水以電透析除鹽」,工業節水技術系列之合理用水與造水技術研討會論文集,1997,第217-231頁。
[3] 涂茂園,「逆滲透及電透析」,石油季刊,1994,第三十卷,第三期,第53-67頁。
[4] Allison, R.P., "Electro dialysis reversal in water reuse applications," Desalination vol. 103, 1995, pp.11-18.
[5] esp@cenet歐洲專利局專利檢索系統, http://ep.espacenet.com/
[6] JP-日本專利資料庫, http://www.ipdl.ncipi.go.jp/homepage.ipdl
[7] USPTO美國專利資料庫, http://www.uspto.gov/patft/index.html
[8] 中華民國專利資訊網, http://www.twpat.com/Webpat/searchZone/pnQuery.aspx
[9] W. Walters, D. Weiser, and L. Marek, Ind. Eng. Chem., 1995, vol. 47, no. 12, pp. 61-67.
[10] Glueckauf, "Electro-deionization through a packed bed", Br. hem. Eng., vol. 4, 1959, p.646.
[11] G. C. Ganzi, “The Ionpure Continuous Deionization Process: Effect of Electrical Current Distribution on Performance,” presented at the 80th Annual AIChE meeting, Washington, DC, on November 28, 1988.
[12] Neumeister, Herbert, et al, “Theory and Experiments Involving an Electrodeionization Process for High-Purity Water Production,” Ultrapure Water Journal, April 2000.
[13] Felice DiMascio, Jonathan Wood, and James M. Fenton, “Continuous Electrodeionization Production of High-Purity Water without Regeneration Chemicals,” The Electrochemical Society Interface, Fall 1998
[14] Telis Dimitrakopoulos, Emmanuel Feuillas, Daniel Darbouret and Stéphane Mabic, “A publication of the Bioscience Division of Millipore,” American, 1994, pp.10-22
[15] Katz, W., Ultrapure Water, 1999, vol. 7, no. 8, pp.52-67.
[16] Khimiko-Farmatsevticheskii Zhurnal, "Ultrapure Water Production by Continuous Electrodeionization Method: Technology and Economy," Pharmaceutical Chemistry Journal, vol. 38, no. 1, 2004, pp.35-40
[17] S. Sung and J. M. Fenton, Environmental Progress. 2000, p.193.
[18] Soria, P., Saporta, M. and Berdun, C., Fruit Processing, 1999, p.368.
[19] D. Steen and G. De Los Reyes, “Electrically enhanced Mixed-Bed Deionization of Sugars, contrast Agents, and Ureas,” IChE Annual Meeting, Miami Beach, FL, November 4, 1992.
[20] Egozy and J.D. Steen, “Electrodeionization: New Tool for the Purification of Pharmaceuticals,” AIChE Summer National Meeting, Boston, MA, July 30- August 2, 1995.
[21] 賴耿陽譯,純水/超純水製造法,台北:復漢出版社,1992,第119-145頁。
[22] 陳衛瑋,「過爐水處理技術與市場前景」,中興月刊,vol. 328,pp.21-25.
[23] 賴耿陽譯,純水/超純水製造法,台北:復漢出版社,1992,第145-198頁。
[24] CEDI UNIVERSITY, http://www.cediuniversity.com/
[25] G. Ganzi (ed.), “GLEGG Reference Design. Pure Water Systems,” Ontario, 2000.
[26] Kabay, N., Arda, M., Kurucaovali, I., Ersoz, E., Kahveci, H., Can, M., Dal, S., Kopuzlu, S., Haner, M., Demircioglu, M., and Yuksel, M. "Effect of feed characteristics on the separation performances of monovalent and divalent salts by electrodialysis." Desalination, vol. 158, no. 1-3, 2003, pp.95-100.
[27] 王月、熊楚強編,電化學,台北:新文京開發出股份有限公司,2004,第27-33頁。
[28] Juang, R.-S., and Lin, L.-C. "Treatment of complexed Copper(II) solutions with electrochemical membrane processes." Water Research, vol. 34, no. 1, 2000, pp.43-50.
[29] Jha, A., DiMascio, F. and Wood, J., Ultrapure Water, no. 7-8, 1993, pp.64-68.
[30] Thang, V. H., Koschuh, W., Kulbe, K. D., and Novalin, S., "Detailed investigation of an electrodialytic process during the separation of lactic acid from a complex mixture." Journal of Membrane Science, vol. 249, no. 1-2, 2005, pp.173-182.
[31] 王月、熊楚強編,電化學,台北:新文京開發出股份有限公司,2004,第8-17頁。
[32] Mohammadi, T., Moheb, A., Sadrzadeh, M., and Razmi, A., "Separation of copper ions by electrodialysis using Taguchi experimental design." Desalination, vol. 169,no. 1,2004, pp.21-31.
[33] De Los Reyes, G.; Yacteen, W.; Bejtlich, C.L.; Sarioglu T. in E.U. Patent No. 1,466,656, “Electrodeionization Process,”2004.
[34] Amel-Eddine Bouhidel, Aicha Lakehal, “Influence of voltage and flow rate on electrodeionization (EDI) process efficiency, ” Desalination, no. 193, 2006, pp.411-421.
[35] Jung-Hoon Song, Min-Chul Song, Kyeong-Ho Yeon, Jung-Bae Kim, Kun-Jai Lee, Seung-Hyeon Moon1, "Purification of a primary coolant in a nuclear power plant usinga magnetic filter . electrodeionization hybrid separation system," Journal of Radioanalytical and Nuclear Chemistry, vol. 262, no. 3, 2004, pp.725-732.
[36] Rychen P. and Leet, J., “The Use of EDI in Treating Semiconductor-grade Water[J]”, Ultrapure Water, 2000, pp.36-40.
[37] S. Trman, Light, Analytical Chemistry, vol. 56, no. 7, 1984, pp.1138.
[38] J.P. and Moulin, J. in U.S. Patent No. 5,593,563, “Electrodeionization Process for Purifying a Liquid,” 1997.
論文全文使用權限:不同意授權