現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:下水污泥前處理減量技術比較之研究 [以論文名稱查詢館藏系統]
論文英文名稱:A Study of Multi-pretreatment Technologies for Sewage Sludge Reduction [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:環境工程與管理研究所
出版年度:97
中文姓名:陳俞穎
英文姓名:Yu-Ying Chen
研究生學號:95608008
學位類別:碩士
語文別:中文
口試日期:2008-06-25
論文頁數:148
指導教授中文名:張添晉
口試委員中文名:陳孝行;李錦地;莊順興
中文關鍵詞:下水污泥超音波水解臭氧處理高溫好氧消化嗜熱菌
英文關鍵詞:Sewage SludgeUltrasoundsOzonationThermophilic Aerobic DigestionThermophilic Bacteria
論文中文摘要:為提升國民良好生活環境,國內積極推動發展污水下水道之建設,污泥產量隨之增加。本研究比較超音波及臭氧前處理技術,結合歐美及日本先進國家之已開發高溫嗜熱菌污泥減量技術,比較此兩項前處理技術及結合嗜熱菌消化減量技術之研究。
超音波及臭氧化前處理之特色為,將污泥膠羽破壞使顆粒變小,提升較難溶出之有機質溶出速率,減少消化時間及剩餘污泥產量。將下水污泥予以超音波水解及臭氧化處理之目的,在於提升後續高溫好氧消化之污泥減量效率。高溫好氧消化技術具備下列幾項特點:(1)使有機廢棄污泥之產量大幅降低;(2)縮短污泥停留時間;(3)對致病菌具有殺菌之能力。其處理方式為將經前處理之污泥迴流至高溫好氧反應槽內,以提高污泥之生物可降解性,利用嗜熱菌產生水解酵素將膠羽結構複雜之大分子分解,溶化為易於微生物利用之小分子。
本實驗分為兩階段進行研究,分別將污泥利用超音波及臭氧前處理,找出最佳破壞效率,第二階段將經前處理之污泥,分別進入高溫好氧消化及常溫好氧消化進行污泥減量。
經由本實驗結果得知超音波水解時間30分鐘,比能量(Es)為397 kJ/gSS,CODs溶出率可達44.4%,臭氧投入劑量為0.34 gO3/gSS,CODs溶出率可達15.5%,相較未經前處理之污泥具有細胞壁破碎效果。第二部分進行高溫好氧消化實驗,污泥停留時間長達15天時,污泥未經前處理給予高溫好氧消化,其VSS平均去除率為53%;經超音波前處理給予高溫好氧消化,可將SRT縮短至3天,去除率高達55%;經臭氧前處理給予高溫好氧消化,SRT可縮短至9天,去除率為55%;證明污泥經前處理可提升後續嗜熱菌消化效率,結果顯示本實驗下水污泥經超音波水解及臭氧化前處理,進行高溫好氧消化可得到良好減量效果。
論文英文摘要:In order to improve environmental quality, Taiwan’s government makes more effort on building sewerage systems construction. These operating sewerage systems will lead to an important increase in sewage sludge production .Due to the limitation of landfall site, sludge disposal will become a hot issue in the future. The focus of this study was to carry out the comparison of the ultrasounds and ozonation technologies integrated with thermophilic aerobic digestion process. Two pretreatment processes for reduction efficiency are been discussed.
The aim of ultrasounds and ozonation is to solubilise and/or to reduce the size of organic compounds, and specially refractory compounds, in order to make them more easily biodegradable. Final quantity of residual sludge and time of digestion can thus be reduced. The objective of pretreatment is to increase reduction efficiency of thermophilic aerobic digestion. The characteristics of thermophilic aerobic digestion process include three parts: (1) increase in organic sewage sludge reduction (2) sludge retention time can be reduced (3) biosolids may be totally contained until they are stabilized. In this process, the excess activated sludge in returned sludge is solubilized with enzyme secreted from the thermophilic bacteria in the S-TE reactor. This enhances the bio-degradability of the returned sludge. The solubilized return sludge is then decomposed and mineralized by activated sludge microorganisms in aeration tank.

The experiment includes two parts:the first is pretreatment of sludge using ultrasounds and ozonation , and find out the efficiency of disintegration cell well. The other is put pretreatment of sludge using ultrasound and ozonation in the thermophilic aerobic digestion reactor and aerobic digestion reactor, respectively.
The results showed that dissolved COD rate of 44.4% for sonication within a duration of 30 minutes(Specific energy is 397 kJ/gSS). The right dose of ozone is 0.34 gO3/gSS that dissolved COD rate until 15.5%. Effect of sludge cell wall efficiency of disintegration, sonication and ozonation pre-treatment was better than non-pretreatment. The SRT was 15 days of thermophilic aerobic digestion, non-treatment sludge of VSS reduction efficiency is 53%. Ultrasounds sludge of SRT can be reduced to 3 days, VSS reduction efficiency is 55%. Ozonation sludge of SRT can be reduced to 9 days, VSS reduction efficiency is 55%.
Overall sludge pretreatment by ultrasonic and ozonation to integrate thermophilic aerobic digestion is positive. The results showed that sewage sludge using pretreatment technologies should increase digestion efficiency of thermophilic aerobic digestion. The results showed that sewage sludge using pretreatment with ultrasonic and ozonation had a good reduction efficiency on thermophilic aerobic digestion process.
論文目次:中文摘要...................................................i
英文摘要 ...............................................iii
誌謝.......................................................v
目錄......................................................vi
表目錄..................................................viii
圖目錄.....................................................x
第一章 前言..............................................1
1.1 研究緣起..............................................1
1.2 研究目的..............................................2
1.3 研究內容..............................................4
1.3.1 研究方法與流程......................................4
1.3.2 研究架構............................................6
第二章 文獻回顧..........................................8
2.1 污泥來源與特性........................................8
2.1.1 污泥之來源..........................................9
2.1.2 污泥之基本特性......................................13
2.1.3 污泥之分類..........................................14
2.1.4 污泥之胞外聚合物....................................15
2.2 下水污泥處理減量技術..................................18
2.2.1 熱水解處理技術......................................18
2.2.2 機械破碎污泥技術....................................20
2.2.3 微型動物污泥減量技術................................22
2.2.4 整合性污泥水解減量系統..............................24
2.2.5 污泥消化減量處理技術................................26
2.3 超音波水解處理技術....................................28
2.3.1 超音波水解技術之原理................................28
2.3.2 超音波水解技術之案例................................30
2.4臭氧化處理技術.........................................33
2.4.1 臭氧化處理技術之原理................................34
2.4.2 臭氧化處理技術之案例................................35
2.5 好氧嗜熱菌(高溫)污泥減量技術..........................40
2.5.1 嗜熱菌(高溫)污泥減量技術之原理及發展................40
2.5.2 高溫菌微生物........................................42
2.5.3 高溫性好氧消化污泥減量處理技術......................42
2.6 小結 46
第三章 實驗方法與設備....................................48
3.1 實驗內容..............................................48
3.1.1 實驗方法與原理......................................48
3.1.2 實驗流程............................................50
3.2 實驗材料與設備........................................51
3.2.1 下水污泥來源........................................51
3.2.2 高溫菌馴養條件......................................54
3.2.3 實驗設備與器材......................................54
3.3實驗配置與設計.........................................60
3.3.1 下水污泥超音波震盪破碎實驗配置......................60
3.3.2 下水污泥臭氧化前處理實驗配置........................61
3.3.3 下水污泥高溫好氧消化之實驗配置......................64
3.3.4 下水污泥常溫好氧消化之實驗配置......................65
3.4實驗分析項目與方法.....................................66
第四章 結果與討論........................................69
4.1內湖污水處理廠污泥成分特性之變化.......................69
4.2超音波水解污泥之破碎效率 ..............................71
4.2.1 超音波水解污泥之有機物溶出比例及其特性..............71
4.2.2 電子顯微鏡觀察超音波水解污泥之外觀..................76
4.2.3 小結................................................78
4.3探討臭氧化處理下水污泥之變化...........................79
4.3.1 臭氧化污泥之有機物溶出比例及其特性..................80
4.3.2 電子顯微鏡觀察臭氧化污泥之外觀......................85
4.3.3 小結................................................86
4.4半連續進流消化時間對下水污泥減量效率之影響.............87
4.4.1 SRT 15天之污泥減量效率..............................88
4.4.2 SRT 12天之污泥減量效率..............................96
4.4.3 SRT 9天之污泥減量效率 .............................102
4.4.4 SRT 6天之污泥減量效率..............................108
4.4.5 SRT 3天之污泥減量效率..............................115
4.4.6 小結...............................................121
4.5綜合討論..............................................123
第五章 結論與建議 ......................................125
5.1 結論 ...............................................125
5.2 建議 ...............................................126
參考文獻 ...............................................127
附錄A:內湖污水處理廠廢棄活性污泥有機物成分比例數據.....135
附錄B:污泥超音波水解及臭氧化反應數據...................137
附錄C:污泥於不同停留時間消化數據.......................139
論文參考文獻:[1] 內政部營建署,污水下水道統計要覽,台北,2005。
[2] 內政部營建署,污水下水道統計要覽,台北,2007。
[3] 李篤中,污泥等有機質之厭氧產氫,碩士,國立台灣大學,台北,2003。
[4] C. Bougrier, C. Albasi, J.P. Delgenès, H. Carrère, "Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability," Chemical Engineering and Processing, vol. 45, 2006, pp. 711-718.
[5] 內政部營建署,污水下水道資訊網,http://sewer.cpami.gov.tw/
[6] E. Z. Harrison, S. R. Oakes, M. Hysell, A. Hay, "Organic chemicals in sewage sludges," Science of the Total Environment, vol. 367, 2006, pp. 481-497.
[7] E. B. Pike, "Pathogen in sewage sludge-agricultural use of sewage sludge and the control of disease," Water Pollut. Control, vol. 85, 1986, pp. 472-490.
[8] G. H. Chen, H. K. Mo, S. Saby, "Minimization of activated sludge production by chemically stimulated energy spilling ," Water Science Technology, vol. 42, No. 12, 2000, pp. 189-200.
[9] O. Pahl, A. Firth, I. MacLeod, J. Baird, "Anaerobic co-digestion of mechanically biologically treated municipal waste with primary sewage sludge-A feasibility study," Bioresource Technology, vol. 99, 2008, pp. 3354-3364.
[10] E. Neyens, J. Baeyens, "A review of classic fenton's peroxidation as advanced oxidation technique," Journal of Hazardous Materials, vol. B98, 2003, pp. 33-50.
[11] 陳高孝,下水道普及率提升衍生污泥處理與管理之研究,碩士,國立台北科技大學,台北,2005。
[12] 美國環保署(U.S. EPA), http://www.epa.gov/
[13] L. Guo, X. M. Li, X. Bo, Q. Yang, G. M. Zeng, D. X. Liao, J. J. Liu, "Impacts of sterilization, microwave and ultrasonication pretreatment on hydrogen producing using waste sludge, " Bioresource Technology, vol. 99, 2008, pp. 3651–3658.
[14] P. Zhang, G. Zhang, W. Wang, "Ultrasonic treatment of biological sludge: Floc disintegration, cell lysis and inactivation," Bioresource Technology, vol. 98, 2007, pp. 207-210.
[15] 余岳峰,下水污泥焚化灰渣燒成輕質骨材特性之研究,碩士,國立中央大學,中壢,2000。
[16] E. Aizenchtadt, D. Ingman, E. Friedler, "Quality control of wastewater treatment: A new approach," European Journal of Operational Research, vol. 189, 2008, pp. 445–458.
[17] Metcalf & Eddy, Wastewater Engineering, George Tchobanoglous, Franklin L. Burton and H. David Stensel, New York: McGraw-Hill, 2003.
[18] 曾迪華,潘時正,「下水道污泥處理處置之現況與展望」,台灣下水道工程實務研討會論文集,2007。
[19] 經濟部工業局,廢水污泥減量技術手冊,台北,2005。
[20] S. Borowski, J. S. Szopa, "Experiences with the dual digestion of municipal sewage sludge," Bioresource Technology , vol. 98, 2007, pp. 1199–1207.
[21] M. F. Dignac, V. Urbain, D. Rybacki, "Chemical description of extracellar polymers: implication on activated sludge floc structure," Water Science and Technology, vol. 38, no. 8-9, 1998, pp. 45-53.
[22] J. I. Houghton, T. Stephenson, "Effect of influent organic content on digested sludge extracellular polymer content and dewaterability," Water Research, vol. 36, 2002, pp. 3620-3628.
[23] 王紅武,李晓岩,赵庆祥,「胞外聚合物對活性污泥沉降和絮凝性能的影響研究」,中國安全科學學報,第十三卷,第九期,2003。
[24] H. Liu, H. H. P. Fang, "Extraction of extracellular polymeric substances (EPS) of sludges," Journal of Biotechnology, vol. 95, no. 3, 2002, pp. 249-256.
[25] B. Frolund, R. Palmgren, K. Keiding, P. H. Nielsen," Extraction of extracellular polymers from activated sludge using a cation exchange resin," Water Research, vol. 30, no. 8, 1996, pp. 1749-1758.
[26] 罗曦,雷中方,张振亚,杉浦则夫,「好氧與厌氧污泥胞外聚合物(EPS) 的提取方法研究」,环境科学学报,第二十五卷,第十二期,2005。
[27] 李延军,李秀芬,华兆哲,刘和,陈坚,「好氧颗粒污泥胞外聚合物的产生及其分布」,環境化學,第二十五卷,第四期,2006。
[28] X. Wang, I. Jim, J. F. Wang, Z. Y. Yang, "Study on the extraction of extracellular fromer aerobic granular sludge," China Water & Wastewater, vol. 21, no. 8, 2005, pp. 91-93.
[29] X. Zhang, P. L. Bishop, B. K. Kinkle, "Comparison of extraction methods for quantifying extracellular polymersin biofilms", Water Science and Technology, vol. 39, no. 7, 1999, pp. 211-218.
[30] 方亮、張丽丽、蔡伟民,「活性污泥胞外多聚物提取方法的比較」,環境科學與技術,第二十九卷,第三期,2006,第46-48頁。
[31] 赵廷,王珂,「热碱促进污泥水解的试验研究」,中国论文下载中心,http://www.studa.net/huanjing/060307/15064763.html
[32] P.T. Hoa, L. Nair, C. Visvanathan, "The effect of nutrients on extracellular polymeric substance production and its in fluence on sludge properties," Water SA., vol. 29, no. 4, 2003, pp. 437-442.
[33] M.J. Brown, J. N. Lester, "Comparison of bacterial extracellular polymer extraction method," Appleed and Environmemtal Microbilogy, vol. 40, no. 2, 1980, pp. 179-185.
[34] M.J. Brown, J. N. Lester, "Role of bacteria ECP in metal uptake in pure bacterial culture and activated sludge-Effects of metal concentration," Water Research, vol. 16, 1982, pp. 1539-1548.
[35] T. Rohwerder, T. Gehrke, K. Kinzler, W. Sand, "Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation, " Applied Microbiology Biotechnol, vol. 63, 2003, pp. 239-248.
[36] R. C. Blake, G. T. Howard, S. McGinness, "Enhanced yields of iron-oxidizing bacteria by in situ electrochemical reduction of soluble iron in the growth medium," Appleed and Environmemtal, vol. 60, 1994, pp. 2704-2710.
[37] 王治军,王伟,李芬芳,「污泥熱水解技术的發展及应用」,中國給水排水,第十九卷,第十期,2003,第25-27頁。
[38] U. Kepp, I. Machenbach , N. Weisz, O. E. Solheim, "Enhanced stabilisation of sewage sludge through thermal hydrolysis-three years of experience with full scale plant," Water Science and Technology, vol. 42, no. 9, 2000, pp. 89-96.
[39] 洪仁陽,「污泥水解減量技術」,化工資訊月刊,第6期,2003,第66-73頁。
[40] Stichting Toegepast Onderzoek Waterbeheer-STOWA, 2006.
http://www.stowa-selectedtechnologies.nl/Sheets/Sheets/Cambi.Process.html
[41] M. Barjenbruch, O. Kopplow, "Enzymatic, mechanical and thermal pre-treatment of surplus sludge," Advances in Environmental Research, vol. 7, 2003, pp. 715-720.
[42] B. Balasundaram, S. T. L. Harrison, "Study of physical and biological factors involved in the disruption of E. coli by hydronamic cavitation," Biotechnology Program, vol. 22, 2006, pp. 907-913.
[43] 鄭欽恆,高溫好氧消化應用於下水污泥減量技術之研究,國立台北科技大學,台北,2007。
[44] P. Liang, X. Huang, Y. Qian, Y. Wei, G. uoji Ding, "Determination and comparison of sludge reduction rates caused by microfaunas’predation," Bioresource Technology, vol. 9, 2006, pp. 854-861.
[45] 周可新,許木啓,曹宏,徐軍,「活性污泥微型動物群落結構優化的可控途徑研究」, 環境污染治理技術與設備,第五卷,第五期,2004,第18-20頁
[46] P. Madoni, "A sludge biotic index (SBI) for the evaluation of the biological performance of activated sludge plants based on the microfauna analysis," Water Research, vol. 28, no. 1, 1994, PP. 67-75.
[47] W. Ghyoot, W. Vestrate, "Reduced sludge production in a two-stage membrane-assisted bioreactor," Water Research, vol. 34, 2000, pp. 205-215.
[48] 顏振義,高溫好氧消化降解污泥中鄰苯二甲酸酯類之研究,國立交通大學/環境工程所,台北,2002。
[49] S. Bernard, N. F. Gray, "Aerobic digestion of pharmaceutical and domestic wastewater sludges at ambient temperature," Water Research, vol. 34, 2000, pp. 725-734.
[50] J. Mata-Alvarez, S. Mace, p. Llabres, "Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives," Bioresource Technology, vol. 74, no. 1, 2000, pp. 3-16.
[51] J. Lu, Ha. N. Gavala, I. V. Skiadas, Z. Mladenovska, B. K. Ahring, "Improving anaerobic sewage sludge digestion by implementation of a hyper-thermophilic prehydrolysis step," Environmental Management, 2007.
[52] A. Tiehm, K. Nickel, M. Zellhorn, U. Neis, "Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization," Water Research, vol. 35, no. 8, 2001, pp. 2003-2009.
[53] H. Monnier, A. M. Wilhelm, H. Delmas, "The influence of ultrasound on micromixing in a semi-batch reactor," Chemical Engineering Science, vol. 54, 1999, p. 2953.
[54] 聂永丰, 李雷,杨海英,李欢,金宜英,张光明,「污泥超声预处理的影响因素分析」,中国给水排水,第二十二卷,第三期,2006。
[55] X.Yin, X. Lu, P. Han, Y. Wang, "Ultrasonic treatment on activated sewage sludge from petro-plant for reduction," Ultrasonics, vol. 44, 2006, pp. 397-399.
[56] F. Wang , Y. Wang , M. Ji, "Mechanisms and kinetics models for ultrasonic waste activated sludge disintegration," Journal of Hazardous Materials, vol. B123, 2005, pp. 145-150.
[57] G. H. Yu, P.J. He, L. M. Shao, Y. S. Zhu, "Extracellular proteins, polysaccharides and enzymes impact on sludge aerobic digestion after ultrasonic pretreatment," Water Research, vol. 42, 2008, pp. 1925-1934.
[58] G. Zhang, P. Zhang, J. Yang, Y. Chen, "Ultrasonic reduction of excess sludge from the activated sludge system," Journal of Hazardous Materials, vol. 145, 2007, pp. 515-519.
[59] 朱敬平、李篤中,「污泥處置(II):污泥之前處理」,台大工程學刊,第八十二期,2001年,第49-76頁。
[60] A. Grönroos, H. Kyllönen, Ki. Korpijärvi, P. Pirkonen,T. Paavola, J. Jokela, J. Rintala, "Ultrasound assisted method to increase soluble chemical oxygen demand (SCOD) of sewage sludge for digestion," Ultrasonics Sonochemistry, vol. 12, 2005, pp. 115-120.
[61] J. Yang, M. Ji, W. H. Liu, H. Yang, "Enhancement of anaerobic digestion of waste activated sludge by ultrasonic pretreatment," Journal of Tianjin University, vol. 30, no. 10, 2006.
[62] F. Wang, Performance and Mechanism of ultrasonic disintegration for waste activated sludge, School of environment and engineering, Tianjin University, Tianjin, 2004.
[63] H. Li,Y. Y. Jin, Y. F. Nie, J. Li, H. Y. Yang, "Ultrasonic sludge treatment and it’s application on aerobic digestion," Environmental Science, vol. 28, no. 7, 2007.
[64] 魏源送,樊耀波,「污泥减量技术的研究及其应用」,中国给水排水,第十七卷,第七期,2001,第23-26頁。
[65] E.U. Low, H.A. Chase, "Reducing production of excess biomass during wastewater treatment," Water Research, vol. 33, no. 5, 1999, pp. 1119-1132.
[66] A. Scheminske, R. Krull, D. C. Hempel, "Oxidative treatment of digested sewage sludge with ozone," Water Science Technology, vol. 42, no. 9, 2000, pp. 151-158.
[67] J. Wan, S. Wu, S. Jiang, "Progress of research on sludge reduction by ozonation," Chemical industry and Engineering Progress, vol. 26, no. 11, 2007.
[68] D. Stéphane, P. Etienne, A. J. Marc, R. Michel, "Effect of ozonation on activated sludge solubilization and mineralization," Ozone:Science and Engineering, vol. 22, 2000, pp. 473-486.
[69] S. Dogruel, M. Sievers, F. Germirli-Babuna," Effect of Ozonation on Biodegradability Characteristics," Ozone: Science and Engineering, vol. 29, 2007, pp. 191-119.
[70] G. Bunning, D.C. Hempel, "Vital - Fluorochreomizaiton of microorganisms using 3′, 6′-diacetyl–fluorescein to determine damages of cell membranes and loss of metabolic activity by ozonation," Ozone Science Engineering, vol. 18, 1996, pp. 173 -181.
[71] S. B. Hea, G. Xue, B. Z. Wang, "Activated sludge ozonation to reduce sludge production in membrane bioreactor (MBR)," Journal of Hazardous Materials, vol. 135, 2006, pp. 406-411.
[72] E. Egemen, J. Corpening, N. Nirmalakhandan, "Evaluation of an ozonation system for reduced waste sludge generation," Water Science Techmology, vol. 44, no. 2, pp. 445-452.
[73] Y. F. Jiang, L. Wang, B.Z. Wang, S. Liu, Z. Wang, "Influence of sludge ozonation on MBR performance efficacy," China Environmental Science, vol. 25, no. 5, 2005, pp. 519-522.
[74] 日本下水道事業團技術開發部,污泥減量化技術評鑑開發報告書,日本琦玉縣,日本下水道事業團技術開發部,2005年4月。
[75] 周健,杨涛,龙腾锐,「 AB法A段污泥减量试验研究」,环境污染治理技术与设备,第七卷,第六期,2006,第46-51頁。
[76] H.Yasui, M. Shibata, "An innovative approach to reduce excess sludge production in the activated sludge process," Water Science and Technology, vol. 30, no. 9, 1994, pp. 11-12.
[77] C. A. Mason, A. Haner, G. Hamer, "Aerobic thermophilic waste sludge treatment", Water Science and Technology, vol. 25, no. 1, 1992, pp. 113-118.
[78] 薛勝豐、林正祥、楊萬發,「高效率有機污泥減量之生物處理技術介紹」,台灣環保技術交流協會會訊,第二期,2005。
[79] 林正祥,「污泥減容減量技術實例探討-嗜熱菌污泥減量技術」,廢水污泥減量減容技術講習會,台北,2004。
[80] J. M. Whirter, P. Balan, B. Swope, R. Gyger, "Evolution of ATAD/Dual Digestion and Recent Process Developments," California Water Environment Association 78 TH Annual Conference Committee, Sacramento Convention Center, 2006.
[81] G. Sürücü, "Growth requirements of thermophilic aerobic microorganisms in mixed cultures for the treatment of strong wastes," Water Science Technology, vol. 40, 1999, pp. 53-60.
[82] F. A. Banat, S. Prechtl, F. Bischof, "Aerobic thermophilic treatment of sewage sludge contaminated with 4-nonylphenol," Chemosphere, vol. 41, 2000, pp. 297-302.
[83] C. S. Tripathi, D. G. Allen, "Comparison of mesophilic and thermophilic aerobic biological treatment in sequencing batch reactors treating bleached kraft pulp mill effluence," Water Research, vol. 33, 1999, pp. 836-846.
[84] M. Roš, G. D. Zupančič, "Thermophilic aerobic digestion of waste activated sludge," Acta Chim, vol. 49, 2002, pp. 931-943.
[85] N. Shiota, A. Akashi, S. Hasegawa, "A strategy in wastewater treatment process for significant reduction of excess sludge production," Water Science and Technology, vol. 45, no. 12, 2002, pp. 127-134.
[86] Y. Sakai, T. Aoyagi, N. Shiota, A. Akashi, S. Hasegawa, " Complete decomposition of biological waste sludge by thermophilic aerobic bacteria," Water Science and Technology, vol. 42, no. 9, 2000, pp. 81-88.
[87] Li, Z. X. Jowitt, Recovering bisodegradable carbon from a thermophilic aerobic digestion supernatant for biological nutrient removal, Master, University of British Columbia, Vancouver, 2001.
[88] K. Deeny, H. Hahn, D. Leonhard, J. Heidman, "Autoheated thermophilic aerobic digestion," Water Environment and Technology, vol. 3, 1991, pp. 65-72.
[89] H. G. Kelly, "Comparing biosolids treatment of thermophilic digestion, thermal-chemical and heat drying technologies 4th european biosolids and organic residuals conference," 1st Canadian Biosolids Conference Proceedings, Toronto, 2000.
[90] H. G. Kelly, W. Urban, R. Warren, "Design considerations for autothermal thermophilic aerobic digestion," World Water and Environmental Resources Congress , Alaska, USA, May15-19, 2005.
[91] D. W. Riley, C. F. Forster, "An evaluation of an autothermal aerobic digestion system, " Institution of Chemical Engineers, vol. 80, 2002.
[92] J.A. Eastman, J.F. Ferguson, "Solubilization of particulate organic carbon during the acid phase of anaerobic digestion," JWPCF, vol. 53, 1981, pp. 352-366.
[93] F. Ohsaka, "Activity to reduce sludge generated from septic tanks to zero using bacterial method," Fujitsu Science. Technology, vol. 41, no. 2, 2005, pp. 259-268.
[94] S. Na, Y. U. Kim, J. Khim, "Physiochemical properties of digested sewage sludge with ultrasonic treatment," Ultrasonics Sonochemistry, vol.14, 2007, pp.281–285
[95] F. Wang, L. Shan, J. Min, "Components of released liquid from ultrasonic waste activated sludge disintegration," Ultrasonics Sonochemistry, vol. 13, 2006, pp. 334-338
[96] M. Weemaes, H. Grootaerd, F. Sinoens, "Anaerobic digestion of ozonized biosolids," Water Research, vol. 34, no. 8, 2000, pp. 2230-2236.
[97] Z. Qian, R. D. Sagers, W. G. Pitt, "The effect of ultrasonic frequency upon enhanced killing of P. aeruginosa biofilms," Annals of Biomedical Engineering, vol. 25, no. 1, 1997, pp. 69-76.
[98] Y. C. Chiu, C. N. Chang, J. G. Lin, S. J. Huang, "Alkaline and ultrasonic pretreatment of sludge before anaerobic digestion," Water Science and Technology, vol. 36, no. 11, 1997, p. 155.
[99] C. Petrier, Y. Jiang, M. Lamy, "Ultrasound and environment: sonochemical destruction of chloromatic derivatives," Environment Science Technology, no. 32, 1998, pp. 1316-1318.
[100] 王琳,孙德栋,「臭氧氧化污泥的试验研究」,中國海洋大學學報,第三十五卷,第二期,2005。
[101] 行政院環保署網站,http://www.epa.gov.tw/main/index.asp
[102] E. Gonze , S. Pillot, E. Valette, Y. Gonthier, A. Ber, "Ultrasonic treatment of an aerobic activated sludge in a batch reactor," Chemical Engineering and Processing, vol. 42, 2003, pp. 965-975.
[103] M. Climent, I. Ferrer, M. D. M. Baeza, A. Artola, "Effects of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions," Chemical Engineering Journal, vol. 133, 2007, pp. 335–342.
[104] Lapin, "Modern Engineering Statistics," International Thomson Publishing Asia, Taiwan, 2003.
論文全文使用權限:同意授權於2008-08-04起公開