現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:下水污泥高溫好氧消化減量技術動力學特性之研究 [以論文名稱查詢館藏系統]
論文英文名稱:A Kinetic Study of Municipal Sewage Sludge by Using Thermophilic Aerobic Digestion [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:環境工程與管理研究所
畢業學年度:97
出版年度:98
中文姓名:葉俊鋒
英文姓名:Chun-Feng Yeh
研究生學號:96608027
學位類別:碩士
語文別:中文
口試日期:2009-06-27
論文頁數:118
指導教授中文名:張添晉
口試委員中文名:歐陽嶠暉;游勝傑;陳孝行
中文關鍵詞:下水污泥超音波水解高溫好氧消化嗜熱菌動力學
英文關鍵詞:Sewage SludgeUltrasoundsThermophilic Aerobic DigestionThermophilic BacteriaKinetic
論文中文摘要:為提升國民對環境品質之要求,污水下水道是現代化都市所具備之主要公共設施,國內積極推動發展污水下水道之建設,污泥產量亦隨之增加。本研究將超音波前處理技術,結合先進國家之已開發高溫嗜熱菌污泥減量技術,並加以用污泥動力學分析前處理技術結合嗜熱菌消化減量技術之研究。
超音波前處理之特色為,將污泥膠羽破壞使顆粒變小,提升較難溶出之有機質溶出速率,減少消化時間及剩餘污泥產量。將下水污泥予以超音波水解處理之目的,在於提升後續高溫好氧消化之污泥減量效率。高溫好氧消化技術具備下列幾項特點:(1)使有機廢棄污泥之產量大幅降低;(2)縮短污泥停留時間;(3)對致病菌具有殺菌之能力。並研究污泥動力學特性,使用動力學模式具備下列特性:(1)了解下水道水質轉化及污水處理程序之操作狀態(2)運用模式可以降低處理成本(3)管理決策之支援,評估新處理程序設計,縮短設計時間。
本實驗透過兩階段進行,將污泥利用超音波震盪前處理後經最佳水解參數(以240W震盪30min),分別進入高溫好氧消化及常溫好氧消化進行污泥減量。第二階段以基質消化前後之濃度,算出不可分解之比例,再套入修正後之Monod方程式,算最大比增殖係數(μmax)及半飽和常數(Ks)。
經由本實驗結果求得消化動力學係數後,高溫嗜熱菌配合超音波震盪前處理等4組實驗(高溫超音波、高溫對照組、常溫超音波及常溫對照組),其基質親和力Ks分別為8,410、978、198及4,340 mg/L。結果顯示,經超音波震盪與高溫消化確實可使污泥中微生物基質親和力增加,使基質愈容易被分解。
論文英文摘要:In order to improve environmental quality, Taiwan’s government makes more effort on building sewerage systems construction. These operating sewerage systems will lead to an important increase in sewage sludge production .Due to the limitation of landfall site, municipal sewage sludge disposal will become a hot issue in the future. The purposes of this study was to carry out the comparison the different of the ultrasounds and untreated sludge, moreover the kinetic analytic integrated with thermophilic aerobic digestion process were also be discussed.
The aim of ultrasounds is to solubilise and/or to reduce the size of organic compounds, and especially refractory compounds, in order to make them more easily biodegradable. Final quantity of residual sludge and time of digestion can thus be reduced. The objective of pretreatment is to increase reduction efficiency of thermophilic aerobic digestion. The characteristics of thermophilic aerobic digestion process include three parts: (1) increase in organic sewage sludge reduction (2) sludge retention time can be reduced (3) biosolids may be totally contained until they are stabilized. The characteristics of sludge dynamics was also studied and the dynamics model can be utilized to (1) understand the changing of sewage quality and the operational conditions of sewage treatment; (2) lower the cost of sewage treatment (3) support management policies and help to evaluate new sewage treatment design, and shorten the designing time.
The experiment includes two parts. The first is pretreatment of sludge using ultrasounds, and find out the efficiency of disintegration cell well. The second stage takes substrate concentration before and after digestion to derive the indecomposable ratio. Inserting the number into the Monod equation, μmax and Ks was obtained.
From the result of this experiment, the digestion dynamics coefficient, and the comparison to references, it was demonstrated that the 4 experimental groups, there were (Ks) 8410, 978, 198, 4340 mg/L separately. We suspect the reason that a high Ks was achieved with the combination of thermophiles and ultrasound irradiation is that the experiment was partial continuous and the air sparging mixer was not automated.This was only observed in a combination of thermophiles and ultrasound irradiation. The result demonstrates that ultrasound irradiation in combination with high temperature digestion can increase Ks and the microbes in sludge, enabling a better decomposition of substrate.
論文目次:中文摘要i
英文摘要ii
誌 謝iv
目 錄v
表 目 錄vii
圖 目 錄ix
第一章 前言1
1.1 研究緣起1
1.2 研究目的3
1.3 研究內容3
1.3.1 研究方法與流程4
1.3.2 研究架構6
第二章 文獻回顧8
2.1 污泥來源與特性9
2.1.1 污泥來源與特性9
2.1.2 污泥之基本特性11
2.1.3 污泥之分類13
2.1.4 污泥之胞外聚合物14
2.2 下水污泥物理水解處理技術19
2.2.1 超音波水解技術之原理19
2.2.2 超音波水解技術之案例23
2.2.3 熱水解處理技術26
2.3 下水污泥化學水解處理技術30
2.3.1 鹼水解技術之原理30
2.3.2 介面活性劑水解技術之原理31
2.4 下水污泥動力學基本研究回顧32
2.4.1 下水污泥系統數學模式之優點32
2.4.2 下水污泥動力學之特性回顧32
2.5 小結40
第三章 實驗方法與設備42
3.1 實驗內容42
3.1.1 實驗方法與原理42
3.1.2 實驗流程43
3.2 實驗材料與設備 45
3.2.1 下水污泥來源 45
3.2.2 高溫嗜熱菌馴養條件48
3.2.3 實驗設備與器材48
3.3 實驗配置與設計54
3.3.1 下水污泥超音波震盪破碎實驗配置54
3.3.2 下水污泥高溫好氧消化之實驗配置55
3.3.3 下水污泥常溫好氧消化之實驗配置56
3.4 實驗分析項目與方法58
第四章 結果與討論61
4.1 內湖污水處理廠污泥成分特性之變化61
4.2 經超音波水解後污泥之基本特性與SEM外觀63
4.2.1 超音波水解污泥之基本特性63
4.2.2 電子顯微鏡觀察超音波水解污泥之外觀66
4.2.3 小結68
4.3 半連續進流消化時間對下水污泥減量效率之影響69
4.3.1 SRT 10天之污泥減量效率69
4.3.2 SRT 7.5天之污泥減量效率74
4.3.3 本研究歷年不同SRT減量效率之比較研究77
4.4 好氧程序生物動力學係數之決定80
4.4.1 下水污泥生物不可分解之比例80
4.4.2 微生物最大比增殖率(μmax)及半飽和常數(Ks)98
4.4.3 不同污泥處理動力學特性之比較研究104
4.5 綜合討論105
第五章 結論與建議108
5.1 結論108
5.2 建議109
參考文獻110
附錄A:內湖污水處理廠廢棄活性污泥有機物成分比例數據117
論文參考文獻:[1]內政部營建署,污水下水道統計要覽,台北,2005。
[2]內政部營建署,污水下水道統計要覽,台北,2007。
[3]台北市政府下水道工程處,http://www.sew.taipei.gov.tw/
[4]內政部營建署,污水下水道統計要覽,台北,2008。
[5]內政部營建署,污水下水道資訊網,http://sewer.cpami.gov.tw/
[6]G. H. Chen, H. K. Mo, S. Saby, "Minimization of activated sludge production by chemically stimulated energy spilling ," Water Science Technology, vol. 42, No. 12, 2000, pp. 189-200.
[7]陳高孝,下水道普及率提升衍生污泥處理與管理之研究,碩士,國立台北科技大學,台北,2005。
[8]美國環保署(U.S. EPA),http://www.epa.gov
[9]Cecil Lue-Hing & David R. Zenz, “Municipal Sewage Sludge Management :Processing, Utilization and Disposal”, U.S.A. , 2001.
[10]余岳峰,下水污泥焚化灰渣燒成輕質骨材特性之研究,碩士,國立中央大學,中壢,2000。
[11]E. Aizenchtadt, D. Ingman, E. Friedler, "Quality control of wastewater treatment: A new approach," European Journal of Operational Research, vol. 189, 2008, pp. 445–458.
[12]Metcalf & Eddy, Wastewater Engineering, George Tchobanoglous, Franklin L. Burton and H. David Stensel, New York: McGraw-Hill, 2003.
[13]經濟部工業局工業污染防治技術服務團,財團法人中國技術服務社,工業污染防之技術手冊之二十八,台北,1980。
[14]謝哲松、盧至人及邱應志,”都市廢水污泥處理”,華泰文化事業公司,國立編譯館,2001,台北。
[15]朱敬平,”有機污泥資源化技術之發展與應用”,財團法人中興工程顧問社,2005,台北。
[16]S. Borowski, J. S. Szopa, "Experiences with the dual digestion of municipal sewage sludge," Bioresource Technology , vol. 98, 2007, pp. 1199–1207
[17]經濟部工業局,污泥處理技術彙編手冊,台北,2004。
[18]經濟部工業局,廢水污泥減量技術手冊,台北,2005。
[19]M. F. Dignac, V. Urbain, D. Rybacki, "Chemical description of extracellar polymers: implication on activated sludge floc structure," Water Science and Technology, vol. 38, no. 8-9, 1998, pp. 45-53.
[20]J. I. Houghton, T. Stephenson, "Effect of influent organic content on digested sludge extracellular polymer content and dewaterability," Water Research, vol. 36, 2002, pp. 3620-3628.
[21]王紅武,李晓岩,赵庆祥,「胞外聚合物對活性污泥沉降和絮凝性能的影響研究」,中國安全科學學報,第十三卷,第九期,2003。
[22]H. Liu, H. H. P. Fang, "Extraction of extracellular polymeric substances (EPS) of sludges," Journal of Biotechnology, vol. 95, no. 3, 2002, pp. 249-256.
[23]B. Frolund, R. Palmgren, K. Keiding, P. H. Nielsen," Extraction of extracellular polymers from activated sludge using a cation exchange resin," Water Research, vol. 30, no. 8, 1996, pp. 1749-1758.
[24]罗曦,雷中方,张振亚,杉浦则夫,「好氧與厌氧污泥胞外聚合物(EPS) 的提取方法研究」,环境科学学报,第二十五卷,第十二期,2005。
[25]X. Zhang, P. L. Bishop, B. K. Kinkle, "Comparison of extraction methods for quantifying extracellular polymersin biofilms", Water Science and Technology, vol. 39, no. 7, 1999, pp. 211-218.
[26]方亮、張丽丽、蔡伟民,「活性污泥胞外多聚物提取方法的比較」,環境科學與技術,第二十九卷,第三期,2006,第46-48頁。
[27]X. Wang, I. Jim, J. F. Wang, Z. Y. Yang, "Study on the extraction of extracellular fromer aerobic granular sludge," China Water & Wastewater, vol. 21, no. 8, 2005, pp. 91-93.
[28]李延军,李秀芬,华兆哲,刘和,陈坚,「好氧颗粒污泥胞外聚合物的产生及其分布」,環境化學,第二十五卷,第四期,2006。
[29]王暄、季民、王景峰、杨造燕,「好氧颗粒污泥胞外多聚物提取方法研究」,中國給水排水期刊,第二十一卷,第八期,2005。
[30]赵廷,王珂,「热碱促进污泥水解的试验研究」,中国论文下载中心,http://www.studa.net/huanjing/060307/15064763.html
[31]M.J. Brown, J. N. Lester, "Comparison of bacterial extracellular polymer extraction method," Appleed and Environmemtal Microbilogy, vol. 40, no. 2, 1980, pp. 179-185.
[32]P.T. Hoa, L. Nair, C. Visvanathan, "The effect of nutrients on extracellular polymeric substance production and its in fluence on sludge properties," Water SA, vol. 29, no. 4, 2003, pp. 437-442.
[33]M.J. Brown, J. N. Lester, "Role of bacteria ECP in metal uptake in pure bacterial culture and activated sludge-Effects of metal concentration," Water Research, vol. 16, 1982, pp. 1539-1548.
[34]T. Rohwerder, T. Gehrke, K. Kinzler, W. Sand, "Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation, " Applied Microbiology Biotechnol, vol. 63, 2003, pp. 239-248.
[35]R. C. Blake, G. T. Howard, S. McGinness, "Enhanced yields of iron-oxidizing bacteria by in situ electrochemical reduction of soluble iron in the growth medium," Appleed and Environmemtal, vol. 60, 1994, pp. 2704-2710.
[36]范少奇,胞外聚合物對生物重金屬溶出程序之影響,碩士,環境工程研究所,國立交通大學,新竹,2005。
[37]S.T.L. Harrison, “Bacterial cell disruption: a key unit operation in the recovery of intracellular products,” Biotechnol. Adv. 9, 217–240, 1991.
[38]邱鈺婷,廢棄活性污泥超音波水解特性之研究,碩士,環境工程研究所,朝陽科技大學,台中,2008。
[39]A. Tiehm, K. Nickel, M. Zellhorn, U. Neis, "Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization," Water Research, vol. 35, no. 8, 2001, pp. 2003-2009.
[40]Suslick, K.S. ‘‘Sonochemistry.(cover story),” Science, vol. 247, pp1439-1445, 1990
[41]N.H. Ince , G. Tezcanli, R.K. Belen and I.G. Apikyan, ‘‘Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications’’ Appl. Catal. B-Enviro., vol.29, pp167-176, 2001.
[42]H. Monnier, A. M. Wilhelm, H. Delmas, "The influence of ultrasound on micromixing in a semi-batch reactor," Chemical Engineering Science, vol. 54, 1999, p. 2953.
[43]聂永丰,李雷,杨海英,李欢,金宜英,张光明,「污泥超声预处理的影响因素分析」,中国给水排水,第二十二卷,第三期,2006。
[44]X.Yin, X. Lu, P. Han, Y. Wang, "Ultrasonic treatment on activated sewage sludge from petro-plant for reduction," Ultrasonics, vol. 44, 2006, pp. 397-399.
[45]廢水污泥減量減容技術講習會,廢水污泥減量減減容研析,台北,2004。
[46]F. Wang , Y. Wang , M. Ji, "Mechanisms and kinetics models for ultrasonic waste activated sludge disintegration," Journal of Hazardous Materials, vol. B123, 2005, pp. 145-150.
[47]G. H. Yu, P.J. He, L. M. Shao, Y. S. Zhu, "Extracellular proteins, polysaccharides and enzymes impact on sludge aerobic digestion after ultrasonic pretreatment," Water Research, vol. 42, 2008, pp. 1925-1934.
[48]G. Zhang, P. Zhang, J. Yang, Y. Chen, "Ultrasonic reduction of excess sludge from the activated sludge system," Journal of Hazardous Materials, vol. 145, 2007, pp. 515-519.
[49]朱敬平、李篤中,「污泥處置(II):污泥之前處理」,台大工程學刊,第八十二期,2001年,第49-76頁。
[50]A. Grönroos, H. Kyllönen, Ki. Korpijärvi, P. Pirkonen,T. Paavola, J. Jokela, J. Rintala, "Ultrasound assisted method to increase soluble chemical oxygen demand (SCOD) of sewage sludge for digestion," Ultrasonics Sonochemistry, vol. 12, 2005, pp. 115-120.
[51]C. Bougrier, H. Carr`ere and J.P. Delgenes, “Solubilization of waste-activated sludge by ultrasound treatment,” Chem. Eng. J. 106, 163–169, 2005.
[52]H. Li,Y. Y. Jin, Y. F. Nie, J. Li, H. Y. Yang, "Ultrasonic sludge treatment and it’s application on aerobic digestion," Environmental Science, vol. 28, no. 7, 2007.
[53]J. Yang, M. Ji, W. H. Liu, H. Yang, "Enhancement of anaerobic digestion of waste activated sludge by ultrasonic pretreatment," Journal of Tianjin University, vol. 30, no. 10, 2006.
[54]F. Wang, Performance and Mechanism of ultrasonic disintegration for waste activated sludge, School of environment and engineering, Tianjin University, Tianjin, 2004.
[55]王治军,王伟,李芬芳,「污泥熱水解技术的發展及应用」,中國給水排水,第十九卷,第十期,2003,第25-27頁。
[56]U. Kepp, I. Machenbach , N. Weisz, O. E. Solheim, "Enhanced stabilisation of sewage sludge through thermal hydrolysis-three years of experience with full scale plant," Water Science and Technology, vol. 42, no. 9, 2000, pp. 89-96.
[57]洪仁陽,「污泥水解減量技術」,化工資訊月刊,第6期,2003,第66-73頁。
[58]Stichting Toegepast Onderzoek Waterbeheer-STOWA, 2006.
http://www.stowa-selectedtechnologies.nl/Sheets/Sheets/Cambi.Process.html
[59]Vesilind, P.A. “The role of water in sludge dewatering,” Water Environ. Res. 66 (1) 1994,4–10.,
[60]Katsiris, N., Kouzeli-Katsiri, A. “Bound water content of biological sludges in relation to filtration and dewatering,” Water Res. 21 (11) ,1987,1319–1327.
[61]Vallom, J.K. and McLoughlin, A.J. “Lysis as a factor in sludge flocculation,” Water Res. 18 (12) ,1984, 1523–1528.
[62]Chen, Y., Jiang, S. and Zhou, Q. “Effect of sodium dodecyl sulfate on waste activated sludge hydrolysis and acidification,” Chem. Eng. J. 132 ,2007, 311–317.
[63]王鳳英,「界面活性劑的原理與應用」,高立圖書有限公司,1996。
[64]白子易,下水道系統生化動力模式建立之研究,博士,環境工程研究所,國立中央大學,桃園中壢,2001。
[65]歐陽嶠暉,下水道工程學(水環境,水再生工程學),長松文化公司,2000。
[66]王明智,周楚洋博士,”以氧化還原電位控制活性污泥程序數學模式之推導”,碩士論文,國立台灣大學,台北,2003。
[67]Monod, J. “Researches sur la croissance des cultures bacteriennes”, Paris:Herrmann et Cie, 1942。
[68]Contois, ”Kinetics of bacterial growth:Relationship between population density and specific growth rate of continuous culture ”, DE, 1959.
[69]Mosser ,”The dynamics of bacterial population maintained in the chemostat”, Publication 614, Washington D.C., 1958.
[70]Grady, C.P.L and H.C. Lim, “Biological wastewater treatment:theory and application”, New York, 1980.
[71]Weddle, C.L. and D. Jenkins, “The viability and activity of activated sludge”, Water Research, 1971.
[72]Postqate, J.R. and J.R. Hunter, “The survival of starved bacteria ”, Journal of general microbiology 29 :233-253, 1962.
[73]Hence, M., C.P.L. Grady, W. Gujer, G.v.R. Marais and Matsuo.,”Activated sludge model No.1 IAWPRC scientific and technical reports No.1”, London, 1987.
[74]Mustafa Isik, Delia Teresa Sponza, “Substrate removal kinetic in an upflow anaerobic sludge blanket reactor decolorizing simulated textile wastewater”,Process Biochemistry 40:1189—1198, 2005
[75]A.G. Liew Abdullah, A. Idris, F.R. Ahmadun, B.S. Baharin, F.Emby, M.J. Megat Mohd, A.H. Nour, “A kinetic study of a anaerobic reactor(MAR) for treatment of sewage sludge”, Desalination 183:439-445, University Putra Malaysia, Selangor, Malaysia, 2005.
[76]M.C Tpmei, C.M. Braguglia, G. Mininni, “Anaerobic degradation kinetic of particulate organic matter in untreated and sonicated sewage sludge:Role of the inoculum”, Bioresource Technology 99:6119-6126, 2008.
[77]J.A. Eastman, J.F. Ferguson, "Solubilization of particulate organic carbon during the acid phase of anaerobic digestion," JWPCF, vol. 53, 1981, pp. 352-366.
[78]F. Ohsaka, "Activity to reduce sludge generated from septic tanks to zero using bacterial method," Fujitsu Science. Technology, vol. 41, no. 2, 2005, pp. 259-268.
[79]S. Na, Y. U. Kim, J. Khim, "Physiochemical properties of digested sewage sludge with ultrasonic treatment," Ultrasonics Sonochemistry, vol.14, 2007, pp. 281–285
[80]H. Monnier, A. M. Wilhelm, H. Delmas, "The influence of ultrasound on micromixing in a semi-batch reactor," Chemical Engineering Science, vol. 54, 1999, p. 2953.
[81]陳俞穎,下水污泥前處理減量技術比較之研究,碩士,環境工程與管理研究所,國立台北科技大學,台北,2008。
[82]F. Wang, L. Shan, J. Min, "Components of released liquid from ultrasonic waste activated sludge disintegration," Ultrasonics Sonochemistry, vol. 13, 2006, pp. 334-338.
[83]周健,杨涛,龙腾锐,「 AB法A段污泥减量试验研究」,环境污染治理技术与设备,第七卷,第六期,2006,第46-51頁。
[84]A. Tiehm, K. Nickel, M. Zellhorn, U. Neis, "Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization," Water Research, vol. 35, no. 8, 2001, pp. 2003-2009.
[85]Z. Qian, R. D. Sagers, W. G. Pitt, "The effect of ultrasonic frequency upon enhanced killing of P. aeruginosa biofilms," Annals of Biomedical Engineering, vol. 25, no. 1, 1997, pp. 69-76.
[86]Y. C. Chiu, C. N. Chang, J. G. Lin, S. J. Huang, "Alkaline and ultrasonic pretreatment of sludge before anaerobic digestion," Water Science and Technology, vol. 36, no. 11, 1997, p. 155.
[87]C. Petrier, Y. Jiang, M. Lamy, "Ultrasound and environment: sonochemical destruction of chloromatic derivatives," Environment Science Technology, no. 32, 1998, pp. 1316-1318.
[88]張添晉,污泥厭氧活性消化動力學特性之研究,博士,土木工程研究所,國立中央大學,桃園中壢,1989。
[89]曾迪華,潘時正,「下水道污泥處理處置之現況與展望」,台灣下水道工程實務研討會論文集,2007。
[90]E. Gonze , S. Pillot, E. Valette, Y. Gonthier, A. Ber, "Ultrasonic treatment of an aerobic activated sludge in a batch reactor," Chemical Engineering and Processing, vol. 42, 2003, pp. 965-975.
[91]鄭欽恆,高溫好氧消化應用於下水污泥減量技術之研究,國立台北科技大學,台北,2007。
[92]行政院環保署網站,http://www.epa.gov.tw/main/index.asp
[93]E. Gonze , S. Pillot, E. Valette, Y. Gonthier, A. Ber, "Ultrasonic treatment of an aerobic activated sludge in a batch reactor," Chemical Engineering and Processing, vol. 42, 2003, pp. 965-975.
[94]M. Climent, I. Ferrer, M. D. M. Baeza, A. Artola, "Effects of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions," Chemical Engineering Journal, vol. 133, 2007, pp. 335–342.
[95]N. Shiota, A. Akashi, S. Hasegawa, "A strategy in wastewater treatment process for significant reduction of excess sludge production," Water Science and Technology, vol. 45, no. 12, 2002, pp. 127-134.
[96]Y. Sakai, T. Aoyagi, N. Shiota, A. Akashi, S. Hasegawa, " Complete decomposition of biological waste sludge by thermophilic aerobic bacteria," Water Science and Technology, vol. 42, no. 9, 2000, pp. 81-88.
論文全文使用權限:同意授權於2012-07-28起公開