現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:廢照明光源螢光粉特性分析與回收再利用之研究 [以論文名稱查詢館藏系統]
論文英文名稱:A Characteristics Study and Recycling of Phosphor Powder from the Spent Fluorescent Lamps [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:環境工程與管理研究所
畢業學年度:97
出版年度:98
中文姓名:游登評
英文姓名:Deng-Ping Yu
研究生學號:96608014
學位類別:碩士
語文別:中文
口試日期:2009-06-24
論文頁數:87
指導教授中文名:張添晉
指導教授英文名:Tien-Chin Chang
口試委員中文名:余炳盛;游勝傑;洪榮勳
口試委員英文名:Bing-Sheng Yu;Sheng-Jie Yu;Rung-Shiun Hung
中文關鍵詞:螢光粉回收再利用日光燈管
英文關鍵詞:Phosphor PowderRecyclingFluorescent lamps
論文中文摘要:我國自民國91年1月1日起開始公告回收廢直式日光燈管,回收工作至今近7年多,執行狀況良好,而國內廢照明光源經回收處理後其資源化產物如玻璃、汞及鋁等物質皆已進行實際之再利用,唯螢光粉之最終處置仍以掩埋為主,實有違資源永續再利用之原則,以國內每年使用之日光燈管約1億支,每支日光燈中含螢光粉之重量約4g,每年產生之廢螢光粉已達400公噸,若能將其直接進行再利用,不僅可減低原物料之需求,同時亦能獲得實質上之益處,如降低環境衝擊、降低成本、提昇附加價值等。
本研究以光譜分析方法,進行新舊螢光粉混摻再利用之最適比例探討,另針對不同段日光燈管螢光粉,將其分為A、B、C等3段,並以XRD、SEM、ICP-MS及光譜分析等方法進行基本特性之研究,新舊螢光粉混摻再利用之最適比例實驗結果顯示,不論以新鹵磷酸鹽螢光粉或新三波長螢光粉針對回收螢光粉進行混摻,其結果皆隨新螢光粉比例提高,可見光譜之積分強度值亦隨之增加,新螢光粉比例為75%,回收螢光粉比例為25%時,其可見光譜之平均積分強度值已達新螢光粉的95.5%及97%,故新螢光粉比例為75%,回收螢光粉比例為25%為本研究認定再利用之最適混摻比例。
另依不同段日光燈管螢光粉之基本特性分析實驗結果顯示,鹵磷酸鹽燈管A段螢光粉於結構、成份及發光效率上皆明顯較B、C段螢光粉為差,若以C段螢光粉之積分強度值為標準,A、B段螢光粉之積分強度值可達C段螢光粉的16%及93%;而三波長燈管之A段螢光粉不論於成份及發光效率上,皆與B、C段螢光粉相似,若以B段螢光粉之積分強度值為標準,A、C段螢光粉之積分強度值可達B段螢光粉的99%。
論文英文摘要:The government has declared recycling for waste fluorescent lamps since Jan 1st in 2002. Distinguished results are very well, and though the waste fluorescent light tubes have been recycled and reused, the resource material- glass, mercury, and aluminum are reused. However, phosphor powder final disposal is still landfill. In Taiwan, there were 100 millions fluorescent lamps be used every year. On the other hand, there were 400 tons phosphor powder which disposal form waste lamps. The phosphor powder recycling could be save the material, protecting environment, and promoting of the value addition.
This study uses spectral analysis to analyze that mixed fluorescent powder which virgin phosphor powder and recycled phosphor powder. Moreover, the author also uses XRD, SEM, ICP-MS to analyze the base compound of the powder.
According to the result in this research, the luminous intensity of mixed powder was increased as the ratio of raw tri-band and halophosphare phosphor powder increased, respectively. When the ratio of raw phosphor powder and recycled phosphor powder was 3:1, the integral intensity of mixed powder was percentages of 95.5 and 97 as raw phosphor powder when wavelength band was 400-700nm. In this result, this study indicated that the optimum mixed powder was3:1 as raw powder and recycle.
This study also separated the lamps as three stages by length to discuss the characteristics. In the result, it found that the stage A was worst among stage B and C. Moreover, the structure of stage A doesn’t have a good components and efficiency of lighting. It found that the integral strength of stage A and B were only 16% and 93% compared with stage C. In the stage A of tri-band lamp, no matter or components lighting efficiency were similar to stage B and C. The integral strength of stage A and C got 99% strength compared with stage B.
論文目次:中文摘要 i
英文摘要 iii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
1.3 研究內容 2
1.3.1 研究方法與流程 3
1.3.2 研究架構 4
第二章 文獻回顧 6
2.1 螢光粉基本特性及危害性 6
2.1.1 螢光粉種類及應用 6
2.1.2 日光燈管發光原理 8
2.1.3 影響發光效率之因素 9
2.1.4 廢棄日光燈管對環境之危害性 10
2.2 螢光材料合成方法 12
2.2.1 固態反應法(Solid state reaction) 12
2.2.2 水熱法(Hydrothermal method) 13
2.2.3 共同沉澱法(Co-precipitation method) 13
2.2.4 噴霧裂解法(spray pyrolysis method) 14
2.2.5 各種螢光材料合成方法之綜合比較 14
2.3 國內外廢照明光源之管理方式及法規 16
2.3.1 國內現況 16
2.3.2 國外現況 17
2.3.3 各國廢照明光源管理法規之綜合比較 20
2.4 廢照明光源處理技術 22
2.4.1 含汞廢棄物處理方式之比較 22
2.4.2 國內廢照明光源處理技術 23
2.4.3 國外廢照明光源處理技術 25
2.4.4 國內外廢照明光源處理技術之綜合比較 28
第三章 實驗方法與設備 30
3.1 研究內容 30
3.2 實驗原理 31
3.2.1 汞之特性及熱脫附原理 31
3.2.2 螢光及光激發螢光原理 31
3.3 實驗方法與流程 32
3.3.1 實驗方法 32
3.3.2 實驗流程 33
3.4 實驗設備 39
3.5 分析方法 42
第四章 結果與討論 44
4.1 螢光粉之基本特性分析 44
4.1.1 鹵磷酸鹽螢光粉之基本特性分析 44
4.1.2 三波長螢光粉之基本特性分析 51
4.2 以新螢光粉混摻回收螢光粉之發光效率及最適比例探討 57
4.2.1 第一次新螢光粉混摻回收螢光粉之發光效率探討 57
4.2.2 第二次新螢光粉混摻回收螢光粉之發光效率探討 60
4.3 不同段日光燈管螢光粉回收純度及發光效率之差異 62
4.3.1 燈絲之EDS分析 62
4.3.2 不同段鹵磷酸鹽燈管螢光粉回收純度之差異 64
4.3.3 不同段三波長燈管螢光粉回收純度及發光效率之差異 72
4.4 實驗綜合討論 78
第五章 結論與建議 82
5.1結論 82
5.2建議 84
參考文獻 85
論文參考文獻:[1]行政院環境署,http://www.epa.gov.tw/。

[2]楊素華,螢光粉在發光上的應用,科學發展,358期,2002。

[3]中台資源科技股份有限公司,http://www.chinalab.com.tw/front/bin/home.phtml。

[4]行政院環保署資源回收基管會,http://recycle.epa.gov.tw/epa/index.asp。

[5]T. Hirajima, K. Sasaki, A. Bissombolo, H. Hirai, M.
Hamada, M. Tsunekawa, “Feasibility of an efficient recovery of rare earth-activated phosphors from waste fluorescent lamps through dense-medium centrifugation,” Separation and Purification Technology, 2005, pp. 197-204.

[6]M. Z. Rabah, “Recyclables recovery of europium and yttrium metals and some salts from spent fluorescent lamps,” Waste Management, 2008, pp. 318-325.

[7]G. Blasse, B.C. Grabmaier, Luminescent Materials, Springer Verlag, 1994.

[8]J. H. Zhanga, H. B. Lianga, R. J. Yua, H. B. Yuana, Q. A. Su, “Luminescence of Ce3+-activated chalcogenide apatites Ca10(PO4)6Y (Y=S, Se),” Materials Chemistry and Physics, 2009, pp. 242-246.

[9]S. G. Shionoya, W. H. Yen, Phosphor Handbook, 1999, Chap.1 p. 7.

[10]M. A. Rabah, “Recovery of aluminium, nickel–copper alloys and salts from spent fluorescent lamps,” Waste Management, 2004, pp. 119-126.

[11]張智勝,冷陰極管螢光燈控制電路之研製,碩士論文,國立成功大學電機工程學系,台南,2004。

[12]李雅芬,冷陰極管熱脫附處理特性之研究,碩士論文,國立台北科技大學環境規劃與管理研究所,台北,2007。

[13] 陳嘉民,微波輔助製備螢光粉,碩士論文,國立成功大學化學工程研究所,台南,2006。

[14]環境技術資訊網,
http://www.e-environment.com.tw/html/index.php。

[15]阮國棟,汞之污染特性及處理技術,工業污染防治,第四卷,第三期,1985,第161-186頁。

[16]D. Wang, X. Shi, S. Wei, “Accumulation and transformation of atmospheric mercury in soil,” the Science of the Total Environment no.304,pp. 3-6, 2002.

[17]V. Stricherz, Mercury in atmosphere could be washed out more easily than earlier believed, 2005.

[18]J. L. Sznopek, T. G. Goonan, The Materials Flow of Mercury in the Economies of the United States and the World, USA Geological Survey Circular 1197, U.S. Geological Survey, 2000, pp1-2.

[19]S. Skårup, C. L. Christensen, J. Maag and S. H. Jensen, Mass Flow Analyses of Mercury 2001, Environmental Project Nr. 917 2004, Danish EPA, 2004.

[20]U.S. Centers for Disease Control, Agency for Toxic Substances and Disease Registry, “Toxicological Profile:Mercury,” 1999.

[21]R. Lutter, E. Irwin, “Mercury in the Environment: A Volatile Problem,” Environment, Vol. 44, no. 9, 2002, pp. 24-40.

[22]李淑莉,台灣地區燃煤發電廠含汞物質流布與管理之研究,碩士論文,國立台北科技大學環境工程與管理研究所,台北,2008。

[23]財團法人台灣產業服務基金會,廢乾電池及廢照明光源回收體系檢討暨成效評估計畫,行政院環保署,2007。

[24]行政院環保署,毒性化學物質災害防救查詢系統,http://61.30.108.131/Chm_/Chm_index.aspx?vp=MSDS。

[25]張中太、張俊英,無機光致發光材料及應用,北京,化學工業出版社,2005。

[26]王美琪,溶膠-凝膠燃燒合成法製備螢光粉體之應用及研究,國立成功大學化學工程研究所,台南,2004。

[27]W. R. Blumenthal and D. S. Philips, J. Am. Ceram. Soc., 1996.

[28]行政院環保署,事業廢棄物貯存清除處理方法及設施標準,2006。

[29]行政院環保署,廢照明光源回收貯存清除處理方法及設施標準,2007。

[30]Florida Department of Environmental Protection http://www.floridadep.org/mainpage/default.htm

[31]US EPA, http://www.epa.gov/

[32]財團法人台灣產業服務基金會,提昇廢乾電池及廢照明光源回收處理成效暨回收清除處理成本調查專案工作計畫,行政院環保署,2008。

[33]王佩賢,法規政策推動,資源回收月刊,2001。

[34]Reimer, Burkard D., “Recycling of Discharge Lamps: Legal Basis in Germany and Europe”, 廢日光燈管回收清除處理技術研討會,台北市,2000。

[35]P. Maxson, Director and Concorde East/West Sprl, Mercury Flows in Europe and world:The impact of decommissioned chlor-alkali plants, European Commission Directorate General for Environment, 2004, pp.25-59.

[36]Hazardous waste treatment standards, Federal Register, 40 CFR, Part 268.40, U.S. EPA, 1986.

[37]P. Masscci, L. Piga, M. Ferrini, “Applications of Physical and Thermal Treatment for the Removal of Mercury from Contaminated Materials,” Mineral Engineering, Vol. 13, no. 8-9, 2000, pp. 963-967.

[38]C. raposo, H. M. Roeser, “Contamination of the environment by the current disposal methods of mercury-containing lamps in the state of Minas Gerais,” Brazil, Waste Management, Vol. 21, 2001, pp. 661-670.

[39]M. Jang, S. M. Hong, J. K. Park, “Characterization and recovery of mercury from spent fluorescent lamps,” Waste Management, Vol. 25, 2005, pp. 5-14.

[40]Haishan Piao, Paul L. Bishop, “Stabilization of mercury-containing wastes using sulfide,” Environmental Pollution, Vol.139, 2006, pp. 498-506.

[41]Walter Alves Durão Jr, Camila Andreva de Castro, Cláudia Carvalhinho Windmöller, “Mercury reduction studies to facilitate the thermal decontamination of phosphor powder residues from spent fluorescent lamps,” Waste Management, Vol.28, 2008, pp. 2311-2319.

[42]MRT公司網站,http://www.mrtsystem.com/home/

[43]AERC公司網站,http://www.aerc-mti.com/

[44]金興工程顧問股份有限公司,廢日光燈回收清理探討計畫,行政院環保署,1999。

[45]國立台北大學資源管理所,廢照明光源(不含日光燈直管)處理技術及成本效益評估計劃,行政院環保署,2003。

[46]Y.S. Shieh, “Thermal Desorption - A Physical Separation Method to Treat Soils and Sludges Contaminated with Organic Compounds”, 1993 HMCRI Superfund XIV Conference, Washington, DC., November 30 - December 2, 1993.

[47]Gayle Woodside, “Hazardous Materials and Hazardous Waste Management,” Second Edition, 1999, Chap. 12 and Chap. 13.
論文全文使用權限:不同意授權