現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:高溫高壓同心圓熱交換器幾何設計與分析 [以論文名稱查詢館藏系統]
論文英文名稱:Design and analysis of the concentric heat exchanger under high temperature and pressure [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:機電學院
系所名稱:機電整合研究所
畢業學年度:101
出版年度:101
中文姓名:陳竑鋻
英文姓名:Hung-Chien Chen
研究生學號:99408016
學位類別:碩士
語文別:中文
口試日期:2012-01-12
論文頁數:89
指導教授中文名:洪祖全
指導教授英文名:Tzu-Chen Hung
口試委員中文名:丁振卿;王曉剛;林昭仁
口試委員英文名:Chen-Ching Ting;Shou-Kong Wang;Jaw-Ren Lin
中文關鍵詞:熱交換器有效度CFD逆向流田口法
英文關鍵詞:Heat exchangerCFDcounter flowε-NTUTaguchi method
論文中文摘要:本研究是以數值方法設計出溫度高達1000℃之高溫高壓同心圓熱交換器,利用ANSYS Workbench結合三維熱流與結構之熱固耦合分析。改變同心圓熱交換器熱流道內鰭片之厚度、角度、間距、長度與流道寬度,進行同心圓熱交換器整體性能分析與內流道熱對流探討。計算流體力學軟體使用ANSYS FLUENT,工作流體熱流為氦氣,冷流為熔融鹽類,冷流和熱流流動方向以逆向流進行熱交換。熱交換器流道內的流體為穩定且不可壓縮之紊流,在幾何參數範圍之選擇鰭片厚度為0.375~1.125mm、鰭片角度2.6~3.4?、鰭片間距1.7~2.1mm、鰭片長度7~11mm以及流道寬度1~8mm,經過田口法與參數分析結果得知最佳的熱傳參數分別為鰭片厚度1.125mm、鰭片角度2.6°、鰭片間距2.1mm、鰭片長度11mm和流道寬度1mm,可以提升同心圓熱交換器約12%的有效度,熱交換器之有效度提升至0.93。藉由本研究可以發現鰭片幾何改變對同心圓熱交換器有效度之影響權重,使得設計出來的熱交換器改變小幅度的幾何結構,能獲得熱交換器整體有效度明顯之提升,且對熱交換器之結構進行熱應力之探討,可使得設計出來的同心圓熱交換器兼具熱傳高和熱應力低,能使得熱交換器使用壽命更長,對於之後探討熱交換器是一大助力。
論文英文摘要:The computational fluid dynamics (CFD) approach has been used to simulate three-dimensional concentric heat exchanger in this research. In order to reduce the burden of the computational time, the concentric heat exchanger was simplified with a angular sector of 3° to represent the internal shape and geometry. The hot and cold streams working fluids with flow oppositely are helium and molten salt, respectively. This study mainly focuses on the distribution of field for the two layers of concentric heat exchanger. The width, the length, the pitch, the thickness and the fin angle of the flow channel have been parametrically analyzed by using the effectiveness-NTU (ε-NTU) method. The individually parametric studies and the optimal combination results showed that the best combination for fin thickness, angle, space, length, and flow channel for heat transfer are 1.125mm, 2.6°, 2.1mm, 11mm, and 1mm in sequence. The result indicates about 70% of effort in experiments or simulations could be saved. The research has found that appropriate modification in geometry can significantly improve the performance in both heat transfer and thermal stress.
論文目次:中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 文獻探討 4
1.3 研究動機與目的 10
1.4 研究分析流程圖 12
第二章 研究方法 13
2.1 物理模型 13
2.2 統御方程式 16
2.2.1 熱流分析參數 18
2.2.2 結構分析 19
2.2.3 熱應力理論 21
2.3 邊界條件 22
2.3.1 熱流之邊界條件 22
2.3.2 結構之邊界條件 23
2.3.3 材料性質設定 24
第三章 數值方法 25
3.1 數值模擬分析流程 25
3.2 求解流程 26
3.3 網格獨立與驗證 28
3.3.1 熱流驗證 29
3.3.2 圓管溫度與熱應力驗證 31
3.3.3 圓管之熱流與應力分析 33
3.4 鬆弛因子 37
3.5 收斂條件 38
第四章 結果與討論 39
4.1 流體經過單一鰭片之探討 41
4.1.1 熱流探討 41
4.1.2 流體流動方向對有效度之影響 43
4.2 田口法分析 44
4.3 熱流參數分析 47
4.3.1 熱流道流速對有效度之影響 47
4.3.2 冷流道流速對有效度之影響 49
4.3.3 熱流道寬度分析 50
4.3.4 熱流道鰭片厚度分析 52
4.3.5 熱流道鰭片長度分析 55
4.3.6 熱流道鰭片間距分析 58
4.3.7 熱流道角度分析 60
4.4 熱流參數綜合比較 63
4.5 結構參數分析 67
第五章 結論與未來展望 74
5.1 結論 74
5.2 未來展望 75
參考文獻 76
符號彙編 87
論文參考文獻:[1] G. F. Hewitt, D. L. Shires, and T. R. Bott, Process Heat Transfer, CRC, 1994, pp. 72-75.
[2] E. Ozden and I. Tari, “Shell side CFD analysis of a small shell-and-tube heat exchanger,” Energy Conversion Manage, vol. 51, 2010, pp. 1004-1014.
[3] A. G. Kanaris, A. A. Mouza, and S. V. Paras, “A corrugated plate heat exchanger using a CFD code,” Chemical Engineering and Technology, vol. 8, 2006, pp. 923-930.
[4] Y. Wang, Q. Dong, and M. Liu, “Characteristics of fluid flow and heat transfer in shell side of heat exchangers with longitudinal flow of shellside fluid with different supporting structures,” International Conference on Power Engineering, 2007, pp. 23-27.
[5] K. L. Wasewar, S. Hargunani, P. Atluri, and N. Kumar, “Simulation of flow distribution in the header of plate-fin heat exchangers,” Chemical Engineering and Technology, vol. 30, 2007, pp. 1340-1346.
[6] L. Z. Zhang, “Flow maldistribution, and thermal performance deterioration in a cross-flow air to air heat exchanger with plate-fin cores,” International Journal of Heat and Mass Transfer, vol. 52, 2009, pp. 4500-4509.
[7] K. Kritikos, C. Albanakis, D. Missirlis, Z. Vlahostergios, A. Goulas, and P. Storm, “Investigation of the thermal efficiency of a staggered elliptic-tube heat exchanger for aero engine applications,” Applied Thermal Engineering, vol. 30, 2010, pp. 134-142.
[8] J. S. Jayakumar, S. M. Mahajani, J. C. Mandal, P. K. Vijayan, and R. Bhoi, “Experimental and CFD estimation of heat transfer in helically coiled heat exchangers,” Chemical Engineering Research and Design, vol. 86, 2008, pp. 221-232.
[9] Y. Wang, Q. W. Dong, M. S. Liu, and D. Wang, “Numerical study on plate-fin heat exchangers with plain fins and serrated fins at low Reynolds number,” Chemical Engineering and Technology, vol. 32, 2009, pp. 1219-1226.
[10] X. Vitart, A. Le Duigou, and P. Carles, “Hydrogen production using the sulfur-iodine cycle coupled to a VHTR: An overview,” Energy Conversion and Management, vol. 47, 2006, pp. 2740-2747.
[11] J. A. Lake, “The fourth generation of nuclear power,” Progress in Nuclear Energy, vol. 40, 2002, pp. 301-307.
[12] X. Vitart, A. L. Duigou, and P. Carles, “Hydrogen production using the sulfur-iodine cycle coupled to a VHTR: an overview,” Energy Conversion and Management, vol. 47, 2006, pp. 2740-2747.
[13] P. J. Li, T. C. Hung, B. S. Pei, J. R. Lin, C. C. Chieng, and G. P. Yu, “A thermodynamic analysis of high temperature gas-cooled reactors for optimal waste heat recovery and hydrogen production,” Applied Energy, vol. 99, 2012, pp. 183-191.
[14] M. A. Al-Nimr, M. Maqableh, A. F. Khadrawi, and S. A. Ammourah, “Fully developed thermal behaviors for parallel flow microchannel heat exchanger,” International Communications in Heat and Mass Transfer, vol. 36, 2009, pp. 385-390.
[15] K. Grijspeerdt and D. Vucinic, “Application of computational fluid dynamics to model the hydrodynamics of plate heat exchangers for milk processing,” Journal of Food Engineering, vol. 57, 2003, pp. 237-242.
[16] D. Aquaro, “High temperature heat exchangers for power plants: Performance of advanced metallic recuperators,” Applied Thermal Engineering, vol. 27, 2007, pp. 391-395.
[17] C. F. McDonald, “Recuperator considerations for future higher efficiency microturbines,” Applied Thermal Engineering, vol. 23, 2003, pp.1463-1487.
[18] V. Kumar, S. Saini, M. Sharma, and D. P. Nigam, “Pressure drop and heat transfer study in tube-in-tube helical heat exchanger,” Chemical Engineering Science, vol. 61, 2006, pp. 4403-4416.
[19] A. Bahadori, “Simple method for estimation of effectiveness in one tube pass and one shell pass counter-flow heat exchangers,” Applied Energy, vol. 88, 2011, pp. 4191-4196.
[20] T. Gundersen and L. Naess, “The synthesis of cost optimal heat exchanger networks-an industrial review of the state of the art,” Computers and Chemical Engineering, vol. 12, 1988, pp. 503-530.
[21] S. H. Noie, “Investigation of thermal performance of an air-to-air thermosyphon heat exchanger using effectiveness-NTU method,” Applied Thermal Engineering, vol. 26, 2005, pp. 555-567.
[22] M. K. Alkam and M. A. Al-Nimr, “Improving the performance of double-pipe heat exchangers by using porous substrates,” International Journal of Heat and Mass Transfer, vol. 42, 1999, pp. 3609-3618.
[23] J. Taborek, “Double-pipe and multitube heat exchangers with plain and longitudinal finned tubes,” Heat Transfer Engineering, vol. 18, 1997, pp. 34-45.
[24] H. Sammeta and K. Ponnusamy, “Effectiveness charts for counter flow corrugated plate heat exchanger,” Simulation Modelling Practice and Theory, vol. 19, 2011, pp. 777-784.
[25] B. W. Jackson and R. A. Troupe, “Plate heat exchanger design by E-NTU method,” Chemical Engineering Progress Symposium Series, vol. 64, 1966, pp. 185-190.
[26] A. Fakheri, “Heat exchanger efficiency,” Journal of Heat Transfer, vol. 129, 2007, pp. 1273-1275.
[27] A. Fakheri, “Alternative Approach for Determining Log Mean Temperature Difference Correction Factor and Number of Shells in Shell and Tube Heat Exchangers,” Journal of Enhanced Heat Transfer, vol. 10, 2003, pp. 407-420.
[28] S. S. Hsieh and D. C. Huang, “Comparisons of thermal performance and pressure drop of counterflow and parallel-flow heat-pipe heat exchangers with aligned/staggered tube rows,” Energy Conversion and Management, 1990, vol. 30
, pp. 357-368.
[29] S. S. Hsieh, C. T. Liauh, and W. S. Han, “Thermal performances of heat exchangers applicable to waste-heat recovery system,” Applied Energy, 1988, vol. 29, pp. 191-200.
[30] O. Kaynakli and I. Horuz, “Comparison of parallel and counter flow coil absorber performance,” International Communications in Heat and Mass Transfer, vol. 33, 2006, pp. 211-223.
[31] O. Kaynakli and I. Horuz, “Evaluation of Coil absorber performance,” Heat Mass Transfer, vol. 40, 2004, pp. 929-936.
[32] J. Y. San, C. H. Hsu, and S. H. Chen, “Heat transfer characteristics of a helical heat exchanger,” Applied Thermal Engineering, vol. 39, 2012, pp. 114-120.
[33] M. Tahani and M. H. S. Fard “CFD modeling and multi-objective optimization of compact heat exchanger using CAN method,” Applied Thermal Engineering, vol. 31, 2011, pp. 2597-2604.
[34] B. J. Huang and J. T. Tsuei, “A method of analysis for heat pipe heat exchangers,” International Journal of Heat and Mass Transfer, vol. 28, 1985, pp. 553-562.
[35] J. Marriott, “Where and how to use plate heat exchangers,” Chemical Engineering, 1971, pp. 127-133.
[36] D. Macgrath, G. Yang, and M. A. Ebadian, “Conjugated heat transfer in a concentric annular pipe,” Nuclear Engineering and Design, vol. 132, 1992, pp. 394-396.
[37] L. D. Nichols, “Temperature profile in the entrance region of an annular passage considering the effects of turbulent convection and radiation,” International Journal of Heat and Mass Transfer, vol. 8, 1965, pp. 589-607.
[38] D. Huber and H. Walter, “Forced convection heat transfer in the transition region between laminar and turbulent flow for a vertical circular tube,” Fluid Mechanics and Heat and Mass Transfer, vol. 74, 2007, pp. 132-136.
[39] R. Karabacak, “Experimental relationships for heat flux, nusselt number and temperature difference in a finned heater,” Energy Conversion and Management, 1996, vol. 37, pp. 591-597.
[40] R. Karabacak, “The effects of fin parameters on the radiation and free convection heat transfer from a finned horizontal cylindrical heater,” Energy Conversion and Management, 1992, vol. 33, pp. 997-1005.
[41] Y. Rao, C. Wan, Y. Xu, and S. Zang, “Spatially-resolved heat transfer characteristics in channels with pin fin and pin fin-dimple arrays,” International Journal of Thermal Sciences, vol. 50, 2011, pp. 2277-2289.
[42] S. Y. Won, G. I. Mahmood, and P. M. Ligrani, “Spatially-resolved heat transfer and flow structure in a rectangular channel with pin fins,” International Journal of Heat and Mass Transfer, vol. 47, 2004, pp. 1731-1743.
[43] N. Tsuzuki, M. Utamura, and T. L. Ngo, “Nusselt number correlations for a microchannel heat exchanger hot water supplier with S-shaped fins,” Applied Thermal Engineering, vol. 29, 2009, pp. 3299-3308.
[44] N. Tsuzuki, Y. Kato, and T. Ishiduka, “High performance printed circuit heat exchanger,” Applied Thermal Engineering, vol. 27, 2007, pp. 1702-1707.
[45] A. Vali, C. J. Simonson, R. W. Besant, and G. Mahmood, “Numerical model and effectiveness correlations for a run-around heat recovery system with combined counter and cross flow exchangers,” International Journal of Heat and Mass Transfer
, vol. 52, 2009, pp. 5827-5840.
[46] N. H. S. Tay, M. Belusko, and F. Bruno, “An effectiveness-NTU technique for characterising tube-in-tank phase change thermal energy storage systems,” Applied Energy, vol. 91, 2012, pp. 309-319.
[47] S. Subramanian, CFD Modeling of Compact Offset Strip-Fin High Temperature Heat Exchanger, Master. Thesis, University of Nevada, Las Vegas, U. S., 2005.
[48] C. R. De Losier, S. Subramanian, V. Ponyavin, Y. T. Chen, and P. F. Peterson, “The Parametric Study of an Innovative Offset Strip-fin Heat Exchanger,” Journal of Heat Transfer, vol. 129, 2007, pp. 1453-1458.
[49] A. Unal, “Theoretical analysis of triple concentric-tube heat exchanger. Part 1: Mathematical modelling,” International Communications in Heat and Mass Transfer, vol. 25, 1988, pp. 949-958.
[50] A. Unal, “Theoretical analysis of triple concentric-tube heat exchanger. Part 2: case studies,” International Communications in Heat and Mass Transfer, vol. 28, 2001, pp. 243-256.
[51] T. C. Hung and C. S. Fu, “Conjugate Heat Transfer Analysis for the Passive Enhancement of Electronic Cooling through Geometric Modification in a Mixed Convection Domain,” J. Numerical Heat Transfer, vol. 35, 1999, pp. 519-535.
[52] T. C. Hung, “A Conceptual Design of Thermal Modeling for Efficiently Cooling an Array of Heated Devices under Low Reynolds Numbers,” Numerical Heat Transfer
, vol. 39, 2001, pp. 361-382.
[53] Y. S. Tseng, H. H. Fu, T. C. Hung, and B. S. Pei, “An Optimal Parametric Design to Improve Chip Cooling,” Applied Thermal Engineering, vol. 27, 2007, pp. 1823-1831.
[54] T. C. Hung, M. S. Shai, and B. S. Pei, “Cogeneration approach for near-shore internal combustion power plants applied to seawater desalination,” Energy Conversion and Management, vol. 44, 2003, pp. 1259-1273.
[55] Y. S. Tseng, T. C. Hung, and B. S. Pei, “Effects of Thermal Radiation for Electronic Cooling on Modified PCB Geometry under Natural Convection,” Numerical Heat Transfer-PART A, vol. 51, 2007, pp. 195-210.
[56] Y. S. Tseng, T. C. Hung, and B. S. Pei, “Enhancement of Cooling Characteristics for Electronic Cooling by Modifying PCB under Natural Convection,” Journal of Electronic Packaging, vol. 130, 2008, pp. 0110061-0110068.
[57] Y. S. Chen, K. H. Chien, C. C. Wang, T. C. Hung, and B. S. Pei, “A Simplified Transient Three-dimensional Model for Estimating the Thermal Performance of the Vapor Chambers,” International Journal of Applied Thermal Engineering, vol. 26, 2006, pp. 2087-2094.
[58] Y. S. Chen, K. H. Chien, C. C. Wang, T. C. Hung, Y. M. Ferng, and B. S. Pei, “Numerical Simulation of a Heat Sink Embedded with a Vapor Chamber and Calculation of Effective Thermal Conductivity of a Vapor Chamber,” Applied Thermal Engineering, 2009, pp. 2655-2664.
[59] Z. Y. Li, T. C. Hung, and W. Q. Tao, “Numerical Simulation of Fully Developed Turbulent Flow and Heat Transfer in Annular-Sector Ducts,” Heat and Mass Transfer
, vol. 38, 2002, pp. 369-377.
[60] S. K. Wang, T. C. Hung, G. W. Lin, and B. S. Pei, “Numerical Simulations for the Phenomena of Vortex Induced Vibration and Heat Transfer of a Circular Cylinder,” Numerical Heat Transfer- PART A, vol. 45, 2004, pp. 1-18.
[61] F. C. C. Galeazzo, R. Y. Miura, J. A. W. Gut, and C. C. Tadini, “Experimental and numerical heat transfer in a plate heat exchanger,” Chemical Engineering Science, vol. 61, 2006, pp. 7133-7138.
[62] J. A. W. Gut and J. M. Pinto, “Optimal configuration design for plate heat exchangers,
” International Journal of Heat and Mass Transfer, vol. 47, 2004, pp. 4833-4848.
[63] X. Du, L. Feng, Y. Yang, and L. Yang, “Experimental study on heat transfer enhancement of wavy finned flat tube with longitudinal vortex generators,” Applied Thermal Engineering, vol. 50, 2013, pp. 55-62.
[64] J. F. Tullius, T. K. Tullius, and Y. Bayazitoglu, “Optimization of short micro pin fins in minichannels,” International Journal of Heat and Mass Transfer, vol. 55, 2012, pp. 3921-3932.
[65] P. Naphon and O. Khonseur, “Study of the convective heat transfer and pressure drop in the micro-channel heat sink,” International Journal of Heat and Mass Transfer, vol. 36, 2009, pp. 39-44.
[66] M. Koz, M. R. Ozdemir, and A. Koşar, “Parametric study on the effect of end walls on heat transfer and fluid flow across a micro pin-fin,” International Journal of Thermal Sciences, vol. 50, 2011, pp. 1073-1084.
[67] B. A. Jasperson, Y. Jeon, K. T. Turner, F. E. Pfefferkorn, and W. Qu, “Comparison of micro-pin-fin and microchannel heat sinks considering thermal-hydraulic performance and manufacturability,” IEEE Transactions On Components And Packaging Technology, vol. 33, 2010, pp. 148-160.
[68] T. Ma, Y. Chen, and Q. Wang, “Stress analysis of internally finned bayonet tube in a high temperature heat exchanger,” Applied Thermal Engineering, vol. 43, 2012, pp. 101-108.
[69] W. E. Anderson, “An engineer views brittle fracture history,” Boeing report, 1960.
[70] D. Broek, Elementary Engineering Fracture Mechanics, Martinus Nijhoff Publishers, Dordrecht, 1986.
[71] S. Timoshenko, “Analysis of bi-metal thermostats,” Journal of the Optical Society of America, vol. 11, 1925, pp. 233-255.
[72] A. Kuo, “Thermal Stress at the Edge of a Bimetallic Thermostat,” Journal of Applied Mechanics, vol. 56, 1989, pp. 585-589.
[73] C. P. Yeh, “Parametric Finite Element Analysis of Flip Chip Reliability,” Journal of Microcircuits and Electronic Packaging, vol. 19, 1996, pp. 120-127.
[74] F. S. Yeh, I. A. Ashcroft, A. D. Crocombe, and M. M. Abdel Wahab, “Thermal residual stress analysis of epoxy bi-material laminates and bonded joints,” Journal of Adhesion and Adhesives, vol. 30, 2010, pp. 523-538.
[75] D. S. Lee, M. L. Liu, T. C. Hung, C. H. Tsai, and Y. T. Chen, “Optimal structural analysis with associated passive heat removal for AP1000 shield building,” Applied Thermal Engineering, vol. 50, 2013, pp. 207-216.
[76] Y. Mizokami, T. Igari, F. Kawashima, N. Sakakibara, and M. Tanihira, “Development of structural design procedure of plate-fin heat exchanger for HTGR,” Nuclear Engineering and Design, vol. 255, 2013, pp. 248-262.
[77] K. Hada, I. Nishiguchi, Y. Muto, and H. Tsuji, N. Sakakibara, and M. Tanihira, “Developments of metallic materials and a high-temperature structural design code for the HTTR,” Nuclear Engineering and Design, vol. 132, 1991, pp. 1-11.
[78] K. N. Song, S. D. Hong H. Y. Lee, and H. Y. Park, “Macroscopic structural behavior on the small-scale PHE prototype under high-temperature test condition,” Engineering Procedia, vol. 10, 2011, pp. 48-56.
[79] F. Kawashima, T. Igari, Y. Miyoshi, Y. Kamito, and M. Tanihira, “High temperature strength and inelastic behavior of plate-fin structures for HTGR,” Nuclear Engineering and Design, vol. 237, 2007, pp. 591-599.
[80] S. Ishiyama and Y. Mutoh, “High temperature mechanical properties on multi stage blazed fin body with ultra fine off-set fin for compact heat exchanger,” Journal of the Japan Institute of Metals, vol. 69, 2003, pp. 682-688.
[81] P. J. Maziasz, B. A. Pint, N. D. Evans, Y. Yamamoto, and K. L. More, “Advanced alloys for compact, high-efficiency, high-temperature heat-exchangers,” International Journal of Hydrogen Energy, vol. 32, 2007, pp. 3622-3630.
[82] M. Kikuchi, M. Sakakibara, Y. Otoguro, H. Mimura, S. Araki, and T. Fujita, “An Austenitic Heat Resisting Steel Tube Developed for Advanced Fossil-Fired Steam Plants,” Elsevier Science Publishing Co., 1987, pp. 267-276.
[83] M. Tsuda, E. Takemura, T. Asada, N. Ohno,and T. Igari, “Homogenized elastic-viscoplastic behavior of plate-fin structures at high temperatures: Numerical analysis and macroscopic constitutive modeling,” International Journal of Mechanical Sciences, vol. 52, 2010, pp. 648-656.
[84] N. Ohno, T. Matsuda, X. Wu, “A homogenization theory for elastic-viscoplastic composites with point symmetry of internal distributions,” International Journal of Solids and Structures, vol. 38, 2001, pp. 2867-2878.
[85] W. Jiang, J. Gong, S. T. Tu, and H. Chen, “Effect of geometric conditions on residual stress of brazed stainless steel plate-fin structure,” Nuclear Engineering and Design, vol. 238, 2008, pp. 1497-1502.
[86] S. F. Jan and T. Rainer, “An innovative ceramic high temperature plate-fin heat exchanger for EFCC processes,” Applied Thermal Engineering, vol. 27, 2007, pp. 1285-1294.
[87] B. E. Launder and D. B. Spalding, Mathematical Models of Turbulence, Londn: Elsevier Inc, 1972, pp. 90-100.
[88] Y. S. Chen and S. W. Kim, Computation of Turbulence Flows Using an Extended k-ε Turbulence Closure Model, NASA CR-179204, 1987.
[89] T. S. Wang and Y. S. Chen, “Unified Navier-Stokes flowfield and performance analysis of liquid rocket engines,” Journal of Propulsion and Power, vol. 9, 1993, pp. 678-685.
[90] ANSYS FLUENT V12 User’s Guide, ANSYS Inc., 2009.
[91] S. V. Patankar and D. B. Spalding, “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows,” International Journal of Heat and Mass Transfer, vol. 15, 1980, pp. 1781-1806.
[92] M. H. Sadd, Elasticity: Theory, Applications, and Numerics, Elsevier Inc, 2009.
[93] F. P. Incropera and D. P. Dewitt, Fundamentals of Heat and Mass Transfer, John Wiley, 2007.
論文全文使用權限:同意授權於2016-01-22起公開