現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:摻雜異價離子(Sm3+、Ca2+ )對CeO2基電解質的顯微結構和性質之分析 [以論文名稱查詢館藏系統]
論文英文名稱:The microstructure and property analysis of aliovalent cations (Sm3+, Ca2+) doped ceria-base electroyte [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:材料科學與工程研究所
畢業學年度:98
出版年度:99
中文姓名:李明翰
英文姓名:Ming-hen Lee
研究生學號:97788026
學位類別:碩士
語文別:中文
口試日期:2010-07-24
論文頁數:152
指導教授中文名:吳玉娟
口試委員中文名:韋文誠;洪逸明;許志雄
中文關鍵詞:固態氧化燃料電池
英文關鍵詞:SOFCceria
論文中文摘要:本研究為發展中溫型SOFC電解質以取代高溫型之YSZ (yttria stabilized zirconia)電解質。故本研究選擇CeO2基之電解質,因螢石(fluorite)結構具有高的氧離子導電率,且純CeO2從室溫到熔點皆為穩定之結構,是好的SOFC電解質材料。利用固態反應法於燒結溫度1450oC/4 h和1550oC/4 h下製備Ce1-XCaXO2-δ (X = 0.10~0.20)、Ce1-XSmXO2-δ (X = 0.10~0.20)和(SmXCa0.2-X)Ce0.8O2-δ (X = 0.05~0.15)試片,並利用XRD、SEM、TEM、Raman、熱膨脹分析儀、直流電性及交流阻抗等儀器,分析試片之晶體結構、顯微組織、原子鍵結、緻密度及離子傳導性。
各成份配比試片在燒結後皆為立方螢石結構,且隨燒結溫度提高會增加緻密性,但同時也增加平均晶粒尺寸。各配比試片在頻率~465 cm-1處為螢石結構之F2g震動模式波峰,且在頻率~570 cm-1處有一寬的波峰出現,是由Ca2+、Sm3+置換Ce4+所產生之氧空位鍵結。在500~800oC範圍,以(Sm0.15Ca0.05)Ce0.8O2-δ (1550oC/4 h)具有最高離子導電率,在800 oC導電率為7.38×10-2 S/cm。
論文英文摘要:This study was to develop ceria-based solid electrolytes with high ionic conductivity for intermediate temperature SOFC (Solid Oxide Fuel Cell). Fluorite structure with the higher oxygen ionic conductivity is the major electrolyte materials in SOFC. The CeO2 is stable cubic fluorite structure from the room temperature to melting point. Beside, as compared to the commercial YSZ (yttria stabilized zirconia) solid electrolyte, it has higher ionic conductivity and lower active energy, so it is applied to as the electrolyte material of intermediate temperature SOFC.
The CaXCe1-XO2-δ (X = 0~0.2), SmXCe1-XO2-δ (X = 0~0.2) and (SmXCa0.2-X) Ce0.8O2-δ (X = 0.05~0.15) electrolytes were sintered at 1450oC and 1550oC for 4 hr by solid-state reaction. All samples were analyzed for crystal structure, appearance, atomic bonding, densification, and ionic conductivity by XRD, SEM, Raman, thermal expansion analyzer and ion conductivity.
All samples are cubic fluorite structure. The densification and average grain size will increase with increasing the sintering temperature. The Raman line (at ~465 cm-1) broadens and becomes asymmetric with a low frequency tail, and a new broad feature appears at 〜570 cm-1 in the spectrum for all samples. These changes are attributed to O vacancies, which were caused by Sm3+, and Ca2+ ions are substituted for Ce4+. The (Sm0.15Ca0.05)Ce0.8O2-δ specimens possess the highest conductivity during 500~800oC and ionic conductivity is 7.38×10-2 S/cm at 800oC.
論文目次:摘 要 i
ABSTRACT iii
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的 3
第二章 文獻回顧與理論背景 4
2.1 燃料電池簡介[1] 4
2.1.1 燃料電池之原理 4
2.1.2 燃料電池的分類與應用 5
2.2固態氧化物燃料電池 6
2.2.1 固態氧化物燃料電池工作原理 6
2.3 固態氧化物燃料電池之電解質 7
2.3.1 螢石結構之電解質 8
2.3.2 氧化鈰基(CeO2)系統之電解質 10
2.4 立方晶系CeO2結構 11
2.4.1 摻雜元素與離子半徑效應 14
2.4.2 氧空缺的形成與傳遞機制 17
2.4.3 摻雜與製程對電解質之顯微結構影響 19
2.5 交流阻抗對電解質材料之分析應用 24
第三章 實驗方法及步驟 28
3.1 試片製作 28
3.1.1 電解質試片製作 28
3.1.2穿透式電子顯微鏡(TEM)試片製備 36
3.2 檢測儀器與操作條件 37
3.2.1雷射粒徑分析儀(laser diffraction particle size analyzer) 37
3.2.2 相對密度(percentage of theoretical density)之分析 37
3.2.3 X射線繞射儀(XRD)分析 39
3.2.4 掃描式電子顯微鏡(SEM)之分析 40
3.2.5 拉曼光譜儀(Raman Spectrometer)分析 42
3.2.6 穿透式電子顯微鏡(TEM)分析 43
3.2.7 四線式電阻量測分析 (4-wire resistive measurement) 44
3.2.8 交流阻抗頻譜分析(AC impedance spectroscopy) 47
3.2.9 活化能(activity energy)分析 49
3.2.10 熱膨脹(dilatometery)分析 49
3.2.11 化學穩定分析 50
第四章 結果與討論 51
4.1 相對密度分析 51
4.2 XRD結構分析 54
4.2.1 XRD之繞射峰之偏移分析 65
4.2.2 XRD之晶格常數分析 68
4.3 SEM之表面顯微組織分析 72
4.3.1 EDS元素光譜分析 84
4.4 拉曼光譜儀分析 85
4.5 四線式電阻量測分析 93
4.6 交流阻抗頻譜分析 100
4.7 TEM之顯微組織觀察與分析 118
4.8 熱膨脹分析 133
4.9 化學穩定性分析 136
第五章 結論 138
參考文獻 141
附錄 144
附錄一 JCPDS卡號 144
附錄二立方晶CeO2模擬立體投影圖 147
立方晶CeO2模擬繞射圖案及相對應的菊池線 148
立方晶CeO2模擬繞射圖案 149
論文參考文獻:[1] 黃鎮江,燃料電池,台北,滄海圖書。
[2] R. O. Hayre, S. W. Cha, W. Colella, F. B. Prinz,燃料電池基礎,全華圖書。
[3] J. Ma, T. S. Zhang, L. B. Kong, P. Hing, Y. J. Leng, S. H. Chan, “Preparation and characterization of dense Ce0.85Y0.15O2 ceramics,” Journal of the European Ceramic Society, 24[9] 2641-2648 (2004).
[4] F. Y. Wang, S. Chen, S. Cheng, “Gd3+ and Sm3+ co-doped ceria based electrolytes for intermediate temperature solid oxide fuel cells,” Electrochemistry Communications, 6[8] 743-746 (2004).
[5] L. D. Jadhav, M. G. Chourashiya, K. M. Subhedar, A. K. Tyagi, J. Y. Patil, “Synthesis of nanocrystalline Gd doped ceria by combustion technique,” Journal of Alloys and Compounds, 470[1-2] 383-386 (2009).
[6] 何玉麗,「我國燃料電池研發動向與應用趨勢」,台灣經濟研究月刊,第26卷,第七期,2003,第6-67頁。
[7] 衣寶廉,燃料電池-原理與應用,台北,五南圖書。
[8] H. Yahiro, K. Eguchi, H. Arai, “Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell,” Solid State Ionics, 36 71-75 (1989).
[9] J. Ma, T. S. Zhang, L. B. Kong, P. Hing, S. H. Chan, “Ce0.8Gd0.2O2−δ ceramics derived from commercial submicron-sized CeO2 and Gd2O3 powders for use as electrolytes in solid oxide fuel cells,” Journal of Power Sources, 132[1-2] 71-76 (2004).
[10] D. R. Ou, T. Mori, F. Ye, J. Zou, J. Drennan, “Comparison between Y-doped ceria and Ho-doped ceria: Electrical conduction and microstructures,” Renewable Energy, 33[2] 197-200 (2008).
[11] H. Inaba, H. Tagawa, “Ceria-based solid electrolytes,” Solid State Ionics, 83[1-2] 1-16 (1996).
[12] F. Ye, T. Mori, D. R. Ou, J. Zou, G. Auchterlonie, J. Drennan, “Compositional and structural characteristics of nano-sized domains in gadolinium-doped ceria,” Solid State Ionics, 179[21-26] 827-831 (2008).
[13] H. Yahiro, T. Ohuchi, K. Eguchi, H. Arai, “Electrical properties and microstructure in the system ceria-alkaline earth oxide,” Journal of Materials Science, 23 1036-1041 (1988).
[14] 張晏韶,以微波加熱燃燒合成法製備異質摻雜CeO2固溶體粉末應用於固態氧化物燃料電池中固態電解質之研究,國立成功大學資源工程系碩士論文,台南,2004。
[15] J. R. McBride, K. C. Hass, B. D. Poindexter, W. H. Weber, “Raman and x-ray studies of Ce1-xRExO2-y, where RE = La, Pr, Nd, Eu, Gd, and Tb,” Journal of Applied Physics, 76 2435-2441 (1994).
[16] D. R. Ou, T. Mori, F. Ye, T. Kobayashi, J. Zou, G. Auchterlonie, J. Drennan, “Oxygen vacancy ordering in heavily rare-earth-doped ceria,” Applied Physics Letters, 89[17] 171911 (2006).
[17] S. Hull, S. T. Norberg, I. Ahmed, S. G. Eriksson, D. Marrocchelli, P. A. Madden, “Oxygen vacancy ordering within anion deficient Ceria,” Journal of Solid State Chemistry, 182[10] 2815-2821 (2009).
[18] T. Mori, R. Buchanan , D. R. Ou, F. Ye, T. Kobayashi, J. D. Kim, J. Zou, J. Drennan, “Design of nanostructured ceria-based solid electrolytes for development of IT-SOFC,” Journal of Solid State Electrochemistry, 12[7-8] 841-849 (2008).
[19] F. Ye, T. Mori, D. R. Ou, M. Takahashi, J. Zou, J. Drennan, “Ionic Conductivities and Microstructures of Ytterbium-Doped Ceria,” Journal of The Electrochemical Society, 154[2] B180-B185 (2007).
[20] M. Yan, T. Mori, J. Zou, F. Ye, D.R. Ou, J. Drennan, “TEM and XPS analysis of CaXCe1-XO2-y (x = 0.05-0.5) as electrolyte materials for solid oxide fuel cells,” Acta Materialia, 57[3] 722-731 (2009).
[21] S. P. Li, J. Q. Lu, P. Fang, M. F. Luo, “Effect of powder thermal treatment on the microstructure and electrical properties of doped ceria ceramics,” Materials Letters, 63[20] 1689-1692 (2009).
[22] W. Zajac , L. Suescun, K. Swierczek, J. Molenda, “Structural and electrical properties of grain boundaries in Ce0.85Gd0.15O1.925 solid electrolyte modified by addition of transition metal ions, ” Journal of Power Sources, 194 [1] 2-9 (2009).
[23] T. S. Zhang, J. Ma, H. Cheng, S.H. Chan, “Ionic conductivity of high-purity Gd-doped ceria solid solutions” Materials Research Bulletin, 41[3] 563-568 (2006).
[24] M. I. Medelson, “Average grain size in polycrystalline ceramics,” Journal of the American Ceramic Society, 52[8] 443-446 (1969).
[25] F. S. Galasso, “structure and properties of inorganic solids,” Oxford, New York, 1970.
[26] M. Yan, T. Mori, J. Zou, J. Drennan, “Effect of Grain Growth on Densification and Conductivity of Ca-Doped CeO2 Electrolyte,” Journal of the American Ceramic Society, 92[11] 2745-2750 (2009).
[27] 史美倫,AC impedance spectroscopy principles and applications,國防工業出版社
論文全文使用權限:不同意授權