現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:摻雜異價離子(Y3+, Nb5+)氧化鉍基固態氧化物電解質電性與微結構之研究 [以論文名稱查詢館藏系統]
論文英文名稱:The electric properties and microstructure analysis of aliovalent ions (Y3+, Nb5+) doped bismuth-based solid oxide electrolyte [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:材料科學與工程研究所
畢業學年度:99
出版年度:100
中文姓名:張耀文
英文姓名:Yao-Wen Chang
研究生學號:98788022
學位類別:碩士
語文別:中文
口試日期:2011-07-20
論文頁數:132
指導教授中文名:吳玉娟
口試委員中文名:王錫福;韋文誠;王玉瑞
中文關鍵詞:固態氧化物燃料電池固態電解質氧化鉍缺陷型螢石結構
英文關鍵詞:Solid Oxide Fuel CellSolid electrolyteBismuth oxideDefect fluorite structure
論文中文摘要:本研究以固態合成法製備出氧化鉍基材摻雜氧化釔、氧化鈮,使氧化鉍螢石結構穩定於室溫中,以獲得良好特性之固態氧化物電解質。其目標在於發展中溫型固態氧化物燃料電池,操作溫度較低於目前商業化釔安定氧化鋯電解質有利於成本降低之優點。因自身不需摻雜異價離子即含25%之氧離子空缺之特點,屬缺陷型螢石結構,也藉此特點而具有極優良之離子傳導性質。
實驗以單摻雜Y2O3與Nb2O5之方式,摻雜系統為Bi1-xYxO1.5與Bi1-yNbyO1.5+δ,分別以摻雜量x = 0.20~0.30,y = 0.15~0.25。燒結條件設定在800~950oC並持溫兩小時,來觀察溫度變化對性質之影響。分析方面以XRD、SEM、Raman、TEM、直流、交流阻抗與熱膨脹係數來觀察各條件下之性質與結構特徵。經燒結後藉由XRD判別試片所屬結構皆呈螢石結構(Fm¯("3" )m)繞射訊號。藉SEM觀察試片隨著燒結溫度提高,使晶粒成長而緻密化。YSB系統中,30YSB/800oC晶粒尺寸為0.59 μm,並在20YSB/950oC晶粒達到10.63 μm;NDB系統中,較為前系統晶粒尺寸略大,25NDB/850oC時晶粒尺寸為0.49 μm,並在15NDB/950oC時成長至29.35 μm。拉曼結構鑑定YSB系統特徵峰出現在110.7 cm-1、617.3 cm-1之頻率;而NDB系統在前段波數分別為96 cm-1、145 cm-1與後段740.6 cm-1則證實其為螢石結構之訊號。在此次直流電阻分析實驗中,20YSB/950oC有最佳離子傳導性,20YSB/800oC試片在800oC時導電度為0.75 S/cm,燒結溫度為950oC於800oC時則有導電性1.97 S/cm;在NDB系統中,15NDB/800oC試片在800oC時導電度為0.38 S/cm,並在燒結溫度為950oC於800oC時電性微幅提升至0.41 S/cm。在交流阻抗實驗中可觀察到,YSB與NDB系統皆在量測溫度提升時,阻抗有下降之表現。TEM顯微分析中,可由擇區繞射影像發現不同的額外繞射點訊號,並藉TEM高解析影像觀察到Type II、Type III之兩種結構共存於25NDB/950oC試片中。熱膨脹分析中經摻雜後20YSB/800oC於600oC時熱膨脹係數為22.6×10-6/oC,摻雜至30YSB/800oC於600oC時熱膨脹係數為20.6×10-6/oC;15NDB/800oC於600oC時熱膨脹係數為19.5×10-6/oC。
論文英文摘要:This investigation of doping yttrium oxide and niobium oxide to bismuth oxide based electrolyte makes the fluorite structure stable in room temperature, so as to get the solid electrolyte which exhibits good properties. The aim of this research is to develop the intermediate temperature type solid state oxide fuel cell, the lower operating temperature than the commercialized electrolyte-YSZ at present, and to reduce the cost. Without doping aliovalent ions, bismuth based electrolyte belong to the defect fluorite structure, with an attribute of having 25% vacancies in itself, a kind of defect fluorite structure, the bismuth oxide has good ionic conductivity.
By doping yttrium oxide and niobium oxide to the Bi1-xYxO1.5 (x = 0.20~0.30) and Bi1-yNbyO1.5+δ (y = 0.15~0.25), sintering at 800~950oC, then we are able to observe how properties are influenced at temperature variation. We also analyze the properties and features of structure at several conditions by XRD, SEM, Raman, TEM, DC impedance, EIS, CTE etc. After sintering we identify the specimens as the fluorite structure (Fm¯("3" )m) by XRD, then use SEM to observe the specimen, the grains grow and became more compacted as the sintering temperature rises. In YSB system, the average grain size is 0.59 μm at 30YSB/800oC, 10.63 μm at 20YSB/950oC.While in NDB system, the grain is larger than that in YSB system, the average grain size is 0.49 μm at 25NDB/850oC, 29.35 μm at 15NDB/950oC. In Raman spectroscopy analysis, we find the characteristic peak appears at wavenumber 110.7 cm-1 and 617.3 cm-1 in YSB system, in NDB system, the peaks appear at the anterior wavenumber 96 cm-1, 145 cm-1, and 740.6 cm-1 at the posterior. According to aforesaid data, we confirm that the later is the cubic-type structure. 20YSB/950oC showed the highest ionic conductivity in this DC-impedance experiment; and the conductivity of 20YSB/800oC is 0.75 S/cm and 20YSB/950oC is 1.97 S/cm at 800oC in YSB system, respectively. 15NDB/800oC shows 0.38 S/cm and 15NDB/950oC slightly up to 0.41 S/cm at 800oC in NDB system, respectively. Through EIS experiment, we are able to observe that the resistance is decreased while the estimate temperature rises up both in YSB and NDB system. In TEM microscopic analysis, we catch sight of different extra diffraction patterns by using the select area diffraction, and observe two structures– type II and type III co-exist in 25NDB/950oC specimen from high-resolution image. Examination of physical property on coefficient of thermal expansion showed that 20YSB/800oC is 22.6×10-6/oC, 30YSB/800oC is 20.6×10-6/oC, 15NDB/800oC is 19.5×10-6/oC at 600oC, respectively.
論文目次:摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 研究目的 2
第二章 文獻回顧與發展理論 3
2.1 燃料電池發展[1][2] 3
2.1.1 燃料電池種類 4
2.2 固態燃料電池 5
2.2.1固態燃料電池工作原理 5
2.3 螢石結構 8
2.3.1 氧化鉍 9
2.4 氧化鉍安定機制 10
2.4.1 摻雜離子和氧空缺關係 11
第三章 實驗方法與步驟 15
3.1 試片製作 15
3.2 儀器量測 18
3.2.1 相對密度 18
3.2.2 收縮率(Shrinkage) 19
3.2.3 X-ray繞射分析 20
3.2.4 掃描式電子顯微鏡(SEM)表面型態分析 20
3.2.5 穿透式電子顯微鏡(TEM)繞射分析 21
3.2.6 拉曼光學(Raman spectrum)分析 23
3.2.7 四線法直流電阻(4 lines method DC resistance)分析 24
3.2.8 交流電阻抗(AC Impedance)分析 25
3.2.9 熱膨脹係數分析 26
第四章 結果與討論 27
4.1 緻密度與收縮比量測 27
4.2 XRD結構鑑定 30
4.2.1 XRD繞射峰角度偏移分析 33
4.2.2 XRD晶格常數計算 37
4.3 Raman光譜鑑定 40
4.4 SEM表面形態分析 45
4.5 四線法直流阻抗分析 57
4.6 交流阻抗頻譜分析分析 66
4.7 TEM之顯微組織觀察與分析 83
4.8 熱膨脹係數量測 108
第五章 結論 112
參考文獻 113
附錄 118
論文參考文獻:[1] 衣寶廉,固態氧化物燃料電池,燃料電池-原理與應用,第1~3頁,台北,五南圖書,2005。
[2] 黃鎮江,燃料電池,台北,滄海圖書,2008。
[3] 何玉麗,我國燃料電池研發動向與應用趨勢,台灣經濟研究月刊,第26卷,第七期,2003。
[4] N. Kamijo, H. Kageyama, K. Koto, H. Maeda, M. Hida, T. Ishida, and H. Terauchi, “Edge and EXAFS studies of bismuth oxide-yttrium oxide (Bi2O3-Y2O3) oxygen conductor,” Journal of the Physical Society of Japan, 55 2217-2231 (1986).
[5] P. Shuk, H. D. Wiemhöfer, U. Guth, W. Göpel, and M. Greenblat, “Oxide ion conducting solid electrolytes based on Bi2O3,” Solid State Ionics, 89 179-196 (1996).
[6] G. Mairesse, “In Fast Ion Transport in Solids,” edited by B.S. Kluwer, Amsterdam, 271 (1993).
[7] H. Iwahara, T. Esaka, T. Sato, and T. Takahashi, “Formation of high oxide ion conductive phases in the sintered oxides of the system Bi2O3-Ln2O3 (Ln = La-Yd),” Journal of Solid State Chemistry, 39 173-180 (1981).
[8] A. Watanabe, “Preparation of a New Phase Having a Cation-Ordered C-Type Rare-Earth Oxide Related Structure in the Systems Bi2O3-Ln2O3 (Ln = Sm, Eu, Gd, Tb, and Dy),” Journal of Solid State Chemistry, 120[1] 32-37 (1995).
[9] R. S. Roth, and J. L. Waring, “Melting process and the equilibrium melting temperature of polycholrotrifluoroethylene,” Journal of research of the National Bureau of Standards. Section A, 66[6] 451-463 (1962).
[10] 余樹楨,晶體之結構與性質,部編大學用書,第224~234頁,台北,渤海堂,1989。
[11] 楊序綱,拉曼光譜的分析與應用,北京,國防工業出版社,2008。
[12] D. F. Hardcastle, and I. E. Wachs, “The Molecular Structure of Bismuth Oxide by Raman Spectroscopy,” Journal of Solid State Chemistry, 97[2] 319-331 (1991).
[13] A. Rubbens, M. Drache, P. Roussel, and J. P. Wignacourt, “Raman scattering characterization of bismuth based mixed oxides with Bi2O3 related structures,” Materials Research Bulletin, 42 1683-1690 (2007).
[14] 陳皇均,陶瓷材料概論,第430~434頁,台北:曉園出版社,2006。
[15] R. Mansfield, “The electrical properties of bismuth oxide,” Proceedings of the Physical Society, 62B 478-483 (1949).
[16] K. Hauffe, and H. Peters, “Conductivity measurements in the system bismuth (III) oxide,” Zeitschrift fuer Physikalische Chemie, 201 121-209 (1952).
[17] C. N. R. Rao, Subba, G. V. Rao, and S. Ramdas, “Phase transformations and electrical properties of bismuth ses-quioxide,” Journal of Physical Chemistry, 73 672-675 (1969).
[18] T. Takahashi, H. Iwahara, and Y. Nagai, “High oxide ion conduction in sintered bismuth oxide containing strontium oxide, calcium oxide, or lanthanum oxide,” Journal of Applied Electrochemistry, 2 97-104 (1972).
[19] E. M. Levin, and R. S. Roth, “Polymorphism of bismuth sesquixide. II. Effect of oxide additions on the poly-morphism of Bi2O3,” Journal of Research of the National Bureau of Standards-A, 68A 189-206 (1964).
[20] C. Wang, X. Xu, and B. Li, “Ionic and electronic conduction of oxygen ion conductors in the Bi2O3-Y2O3 system,” Solid State Ionics, 13 135-140 (1984).
[21] T. Takahashi, and H. Iwahara, “Oxide ion conductors based on bismuth ses-quioxide,” Materials Research Bulletin, 13 1447-1453 (1978).
[22] T. Esaka, and H. Iwahara, “Oxide ion and electron mixed conduction in the flurite-type cubic solid solution in the system Bi2O3-TbO2,” Journal of Applied Electrochemistry, 15 447-451 (1985).
[23] M. J. Verkerk, and A. J. Burggraaf, “High oxygen ion conduction in sintered oxides of the bismuth oxide-dys- prosium oxide (Bi2O3-Dy2O3) system,” Journal of the Electrochemical Society, 128 [1] 75-82 (1981).
[24] H. T. Cahen, T. G. M. van den Belt, J. H. W. de Wit, and G. H. J. Broers, “The electrical conductivity of δ-Bi2O3 stabilized by isovalent rare-earth oxides R2O3,” Solid State Ionics, 1 411-423 (1980).
[25] J. R. Jurado, C. Moure, P. Duran, and N. Valverde, “Preparation and electrical properties of oxygen ion conductors in the Bi2O3-Y2O3(Er2O3),” Journal of Solid State Ionics, 28-30 518-523 (1988).
[26] J. Berezovsky, H. K. Liu, and S. X. Dou, “Conductivity and microstructure of bismuth oxide-based electrolytes with enhanced stability,” Journal of Solid State Ionics, 66 201-206 (1993).
[27] M. J. Verkerk, and A. J. Burggraaf, “High oxygen ion conduction in sintered oxides of Bi2O3-Ln2O3 system,” Journal of Solid State Ionics, 3/4 463-467 (1981).
[28] A. Watanabe, “Bi23M4O44.5 (M = P and V)-new oxide- ion conductors with triclinic structure based on a pseudo-fcc subcell,” Journal of Solid State Ionics, 75 81-96 (1997).
[29] G. Meng, C. Chen, X. Han, P. Yang, and D. Peng, “Conductivity of Bi2O3-based oxide ion conductors with double stabilizers,” Journal of Solid State Ionics, 28-30 533-538 (1988).
[30] T. Takahashi, H. Iwahara, and T. Arao, “High oxide ion conducting in sintered oxides of the system bismuth(III) oxide-yttrium oxide,” Journal of Applied Electrochemistry, 5 187-195 (1975).
[31] 黃朝琪,氟化鈣型結構氧化鉍系固態電解質之研究,國立成功大學材料科學與工程研究所博士論文,台南,2006。
[32] 史美倫編著,交流阻抗譜原理與應用,第1~18頁,北京,國防工業出版社,2001。
[33] 陳政緯,半電池反應之交流阻抗研究鑭鈣鈷鐵氧化物陰極,國立臺灣科技大學,台北,2007。
[34] 高正治著,電工原理,第33~38頁,台北,三民書局印行,1982。
[35] Y. Li, T. P. Hutchinson Tom, X. Kuang, P. R. Slater, M. R. Johnson, and I. R. Evans, “Ionic Conductivity, Structure and Oxide Ion Migration Pathway in Fluorite-Based Bi8La10O27,” Journal of Physical Chemistry Material, 21 4661-4668 (2009).
[36] A. Castro, E. Aguado, J. M. Rojo, P. Herrero, R. Enjalbert, and J. Galy, “The new oxygen-deficient fluorite Bi3NbO7: synthesis, electrical behavior and structural approach,” Materials Research Bulletin, 33 31-41 (1998).
[37] N. Jiang, E. D. Wachsman, and S. H. Jung, “A higher conductivity Bi2O3-based electrolyte,” Solid State Ionics 150 347-353 (2002).
[38] W. Zhou, D. A. Jefferson, and J. M. Thomas, “A New Structure Type in the Bi2O3-Nb2O5 System,” Journal of solid state chemistry, 70 129-136 (1987).
[39] W. Zhou, D. A. Jefferson and J. M. Thomas, “Defect fluorite structures containing Bi2O3: the system Bi2O3-Nb2O5,” Proceedings of the Royal Society, A406 173-182 (1986).
[40] W. Zhou, “Structural Chemistry Physical Properties of Some Ternary Oxides in the Bi2O3-Ta2O5 System,” Journal of solid state chemistry, 101 1-17 (1992).
[41] W. Zhou, “Defect Fluorite-Related Superstructures in the Bi2O3-V2O5 System,” Journal of solid state chemistry, 76 290-300 (1988).
[42] W. Zhou, “Defect Fluorite Superstructures in the Bi2O3-WO3 System,” Journal of solid state chemistry, 108 381-394 (1994).
[43] C. D. Ling, M. Johnson, “Modelling, refinement and analysis of the “Type III” δ-Bi2O3-related superstructure in the Bi2O3–Nb2O5 system,” Journal of Solid State Chemistry, 177 1838-1846 (2004).
[44] F. Tietz, F. J. Dias, B. Dubiel and H. J. Penkall, “Manufacturing of NiO:NiTiO3 porous substrates and the role of zirconia impurities during sintering,” Materials Science and Engineering B, 68 35-41 (1999).
[45] 衣寶廉、黃朝榮、林修正,固態氧化物燃料電池,燃料電池原理與應用,第430~550頁,台北,五南圖書,2005。
[46] C. Mongkolkachit, and S. Wanakitti, “Characterization of (La,Sr)(Co,Fe)O3-δ Ferrite-Based Cathodes for Intermediate-Temperature SOFCs,” Journal of Metals, Materials and Minerals, 18 2 33-36 (2008).
[47] E. V. Tsipis, E. A. Kiselev, V. A. Kolotygin, J. C. Waerenborgh, V. A. Cherepanov, and V. V. Kharton, “Mixed conductivity, Mössbauer spectra and thermal expansion of (La,Sr)(Fe,Ni)O3−δ perovskites,” Journal of solid state Ionics, 179 2170-2180 (2008).
論文全文使用權限:同意授權於2016-08-23起公開