現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:固態電解質La1-xSrxGa1-yMgyO3-δ之電性及微觀結構分析 [以論文名稱查詢館藏系統]
論文英文名稱:The electrical and microstructure analysis of solid electrolyte La1-xSrxGa1-yMgyO3-δ ceramic [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:材料及資源工程系研究所
畢業學年度:99
出版年度:100
中文姓名:李明澤
英文姓名:Ming-Ze Lee
研究生學號:98788048
學位類別:碩士
語文別:中文
口試日期:2011-07-22
論文頁數:146
指導教授中文名:吳玉娟
口試委員中文名:盧宏陽;許志雄;王偉霖
中文關鍵詞:固態氧化物燃料電池固態反應法固態電解質鈣鈦礦結構
英文關鍵詞:Solid Oxide Fuel CellSolid state reactionSolid electrolytePerovskite structure
論文中文摘要:本研究利用固態合成法製備中溫型固態氧化物燃料電池之電解質La1-xSrxGa1-yMgyO3-δ試片。LaGaO3鈣鈦礦結構微量摻雜二價的Sr和Mg,在中溫範圍(600oC ~ 800oC)具有高氧離子導電率,並且造成相結構的轉變。本實驗經由XRD、SEM、TEM、Raman、直流電性、交流阻抗及熱膨脹等分析儀器,分析試片之顯微組織、晶體結構、離子導電性。主要討論在不同添加量下其微觀結構變化和電性之關係。
結果顯示共摻雜後晶體結構會從正交晶系轉變成菱方晶系,並觀察到有微量二次相SrLaGa3O7於晶界析出。拉曼在674、738 cm-1會產生額外峰值,推測是由Sr2+置換La3+、Mg2+置換Ga3+所產生之氧空位鍵結。利用SEM觀察試片表面結構,觀察到LaGaO3的平均晶粒大小為10 μm,並隨著摻雜量的增加而提升。於操作溫度500oC ~ 800oC之DC電性量測,當共摻雜量達0.35 mol以上,在800oC時有高離子導電率σ約0.16 S/cm。以TEM觀察可以發現低摻雜之LSGM1010試片表面,有明顯且密集之板狀微結構。隨著摻雜量的增加,此微結構有減少甚至消失的趨勢,推測此與結構轉換有關聯。
論文英文摘要:This study was to develop La1-xSrxGa1-yMgyO3-δ solid electrolytes with high ionic conductivity for intermediate temperature SOFC (Solid Oxide Fuel Cell).The perovskite solid solution formed by the substitution of La and Ga by Sr and Mg had a superior oxide ion conuctivity at intermediate temperature of 600oC ~ 800oC. The LSGM ceramics had studied correlations between the crystal structures and oxide ion conduction properties of LaGaO3-based compound systems by XRD, SEM, TEM, Raman and conductivity. The crystal structure was changed from the orthorhombic to the rhombohedral with dopimg Sr and Mg was odserved. The second phase SrLaGa3O7 was identified by XRD and EDS. The extra aman bands at 674 cm-1, 738 cm-1 were observed, probably due to oxygen vacancy inducing by doping. The average grain size will increase with increasing by Sr and Mg site dopant content. The ionic conductivity of LSGM was enhanced with increase of both the Sr and Mg doped. When the total dopant concentration was more than 0.35 mol, the conductivity was higher than 0.16 S/cm. The lamellar-like microstructure was observed in LSGM1010, LSGM1020 specimens, and decreased with increasing dopant content.
論文目次:目錄

摘要 i
ABSTRACT iii
致謝 v
目錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1前言 1
1.2研究動機 2
1.3研究目的 2
第二章 文獻回顧 3
2.1燃料電池簡介 3
2.2燃料電池 3
2.3固態氧化物燃料電池之結構 5
2.4固態氧化物燃料電池之原理 7
2.5固態電解質 8
2.6鈣鈦礦結構 9
2.7LSGM電性表現 14
第三章 實驗方法及步驟 17
3.1La1-xSrxGa1-yMgy O3-δ試片製備 17
3.2儀器分析 23
3.2.1雷射粒徑分析儀 23
3.2.2相對密度分析 23
3.2.3X射線繞射儀分析 24
3.2.4同步輻射X射線繞射儀分析 25
3.2.5掃描式電子顯微鏡(SEM)之分析 26
3.2.6拉曼光譜儀分析 28
3.2.7四線式直流電性量測分析 29
3.2.8交流阻抗頻譜分析 31
3.2.9穿透式電子顯微鏡(TEM)分析 32
3.2.10穿透式電子顯微鏡(TEM)試片製備 33
3.2.11熱膨脹分析 34
第四章 結果與討論 35
4.1XRD之分析 35
4.1.1峰值偏移分析 40
4.1.2同步輻射分析 44
4.1.3晶格常數 48
4.2相對密度分析 52
4.3收縮率分析 53
4.4SEM分析 54
4.5拉曼光譜分析 68
4.6DC電性分析 71
4.7AC交流阻抗 79
4.8熱膨脹分析 88
4.9TEM分析 91
4.9.1試片明視野影像分析 91
4.9.2晶體結構之晶向關係 94
4.9.3LaGaO3雙晶結構分析 105
4.9.4LSGM2020高解析影像分析 108
4.9.5二次相分析 113
第五章 結論 115
參考文獻 117
附錄 124
附錄一 JCPDS卡號 124
附錄二 立方晶LaGaO3模擬立體投影圖 128
附錄三 立方晶LaGaO3模擬繞射圖案 130
附錄四 MacTempas的模擬 133
論文參考文獻:[1] W. R. Grove, “On Voltaic Series and the Combination of Gases by Platinum”, Philosophical Magazine and Journal of Science, 14, 127-130 (1839).
[2] R. M. Ormerod, “Solid Oxide Fuel Cells”, The Royal Society of Chemistry, 32, 17-28 (2003).
[3] 衣寶廉,燃料電池-原理與應用,台北,五南書局,420-514,2007。
[4] T. Ishihara, H. Matsuda, Y. Takita, “Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor”, Journal of the American Chemical Society, 116, 3801-3803 (1994).
[5] M. S. Khan, M. S. Islam, “Dopant Substitution and Ion Migration in the LaGaO3-Based Oxygen Ion Conductor”, Journal of the American Chemical Society, B 102, 3099-3104 (1998).
[6] K. Huang, R. S. Tichy, J. B. Goodenough, “Superior Perovskite Oxide-Ion Conductor; Strontium- and Magnesium-Doped LaGaO3:Ⅰ, Phase Relationships and Electrical Properties”, Journal of the American Ceramic Society, 81[10], 2565-2575 (1998).
[7] K. Huang, R. S. Tichy, J. B. Goodenough, “Superior Perovskite Oxide-Ion Conductor; Strontium- and Magnesium-Doped LaGaO3:Ⅱ, ac Impedance Spectroscopy”, Journal of the American Ceramic Society, 81[10], 2576-2580 (1998).
[8] K. Huang, R. S. Tichy, J. B. Goodenough, “Superior Perovskite Oxide-Ion Conductor; Strontium- and Magnesium-Doped LaGaO3:Ⅲ, Performance Tests of Single Ceramic Full Cells”, Journal of the American Ceramic Society, 81[10], 2581-2585 (1998).
[9] T. Ishihara, “Development of New Fast Oxide Ion Conductor and Application for Intermediate Temperature Solid Oxide Fuel Cells”, The Chemical Society of Japan, 79, 1155-1166 (2006).
[10] T. Ishihara, M. Ando, Makiko. Enoki, Y. Takita, “Oxide Ion Conductivity in La(Sr)Ga(Fe,Mg)O3 and its Application for Solid Oxide Fuel Cells”, Journal of Alloys and Compounds, 408-412, 507-511 (2006).
[11] I. A. Leonidov, I. V. Baklanova, L. A. Perelyaeva, O. N. Leonidova, R. F. Samigullina, V. L.Kozhevnikov, “The Effect of Divalent Cations on the Structural Parameters,Phase Transitions, and Electrical Conductivity of Oxygen Conductors Based on LaGaO3”, Doklady Chemistry, 427[2], 194-198 (2009).
[12] J. A. Kilner, R. J. Brook, “A Study of Oxygen Ion Conductivity in Doped Non-Stoichiometric Oxides”, Solid State Ionics, 6, 237-252 (1982).
[13] R. A. D. Souza, M. Martin, “An Atomistic Simulation Study of Oxygen-Vacancy Migration in Perovskite Electrolytes Based on LaGaO3”, Monatshefte fur Chemie-Chemical Monthly, 140, 1011-1015 (2009).
[14] M. Mizuno, T. Yamada, T. Ohtake, “Phase Diagram of the System Ga2O3-La2O3 at High Temperatures”, Yogyo Kyokai Shi, 93[6], 295-300 (1985).
[15] P. Majewski, M. Rozumek, F. Aldinger, “Phase diagram studies in the systems La2O3–SrO–MgO–Ga2O3 at 1350–1400oC in air with emphasis on Sr and Mg substituted LaGaO3”, Journal of Alloys and Compounds, 329, 253-258 (2001).
[16] N. Liu, M. Shi, C. Mang, Y. P. Yuan, “Microstructure and Ionic Conductivity of Sr- and Mg-doped LaGaO3”, Journal of Materials Science, 41, 4205-4213 (2006).
[17] X. C. Lu, J. H. Zhu, “Effect of Sr and Mg Doping on the Property and Performance of the La1−xSrxGa1−yMgyO3−δ Electrolyte”, Journal of The Electrochemical Society, 155, 494-503 (2008).
[18] 黃鎮江,燃料電池,台北,滄海圖書,2008,216-263。
[19] M. Shi, N. Liu, Y. Xu, Y. Yuan, P. Majewski, F. Aldinger, “Synthesis and Characterization of Sr- and Mg-doped LaGaO3 by Using Glycine–Nitrate Combustion Method”, Journal of Alloys and Compounds, 425, 348-352 (2006).
[20] M. Kajitania, M. Matsudaa, A. Hoshikawab, S. Harjob, T. Kamiyamac, T. Ishigakib, F. Izumid, M. Miyakea, “Doping Effect on Crystal Structure and Conduction Property of Fast Oxide Ion Conductor LaGaO3-Based Perovskite”, Journal of Physics and Chemistry of Solid, 68, 758-764 (2007).
[21] Q. Li, V. Thangadurai, “Synthesis, Structure and Electrical Properties of Mo-doped CeO2–Materials for SOFCs”, Fuel Cells, 9[5], 684-698 (2009).
[22] E. J. Abran, D. C. Sinclair, A. R. West, “Electrode-Contact Spreading Resistance Phenomena in Doped-Lanthanum Gallate Ceramics”, Journal of Electroceramics, 7, 179-188 (2001).
[23] C. Haavik, E. M. Ottesen, K. Nomura, J. A. Kilner, T. Norby, “Temperature Dependence of Oxygen Ion Transport in Sr + Mg-Substituted LaGaO3 (LSGM) with Varying Grain Sizes”, Solid State Ionics, 174, 233-243 (2004).
[24] J. E. Bauerle, “Study of Solid Electrolyte Polarization by a Complex Admittance Methods”, Journal of Physics and Chemistry of Solid, 30, 2657-2670 (1969).
[25] J. Zhang, E. J. Liang, X. H. Zhang, “Rapid Synthesis of La0.9Sr0.1Ga0.8Mg0.2O3-δ Electrolyte by a CO2 Laser and its Electric Properties for Intermediate Temperature Solid State Oxide Full Cells”, Journal of Power Sources, 195, 6758-6763 (2010).
[26] D. M. Lopez , J. C. R. Morales, J. P. Martinez, M. C. M. Sedeno, J. R. R. Barrado, “Influence of Phase Segregation on the Bulk and Grain Boundary Conductivity of LSGM Electrolytes”, Solid State Ionics, 186, 44-52 (2011).
[27] M. Kajitani, M. Matsuda, A. Hoshikawa, S. Harjo, T. Kamiyama, T. Ishigaki, F. Izumi, M. Miyake, “In Situ Neutron Diffraction Study on Fast Oxide Ion Conductor LaGaO3-Based Perovskite Compounds”, Journal of the American Chemical Society, 17, 4235-4243 (2005).
[28] P. Datta, P. Majewski, F. Aldinger, “Structural Studies of Sr- and Mg-doped LaGaO3”, Journal of Alloys and Compounds, 438, 232-237 (2007).
[29] T. Inagaki, K. Miura, H. Yoshida, J. Fujita, M. Nishimura, “Raman Studies of LaGaO3 and Doped LaGaO3”, Solid State Ionics, 118, 265-269 (2011).
[30] T. Shibasaki, T. Furuya, S. Wang, T. Hashimoto, “Crystal Structure and Phase Transition Behavior of La1-xSrxGa1-yMgyO3-δ”, Solid State Ionics, 174, 193-203 (2004).
[31] J. P. Morniroli, G. J. Auchterlonie, J. Drennan, J. Zou, “Contribution of Electron Precession to the Study of Perovskites Displaying Small Symmetry Departures from the Ideal Cubic ABO3 Perovskite: Applications to the LaGaO3 and LSGM Perovskites”, Journal of Microscopy, 232, 7-26 (2008).
[32] Y. Ogata, K. Tsuda, M. Yamaguchi, T. Fumoto, T. Furuya, T. Hashimoto, “Selected Area and Convergent-Beam Electron Diffraction of LaGaO3 and LaGa0.9Mg0.1O2.95 - Space Group Determinations and Identification of Anti-Phase Domain Structure”, Solid State Ionics, 178, 1113-1121 (2007).
[33] G. Ji, J. P. Morniroli, G. J. Auchterlonie, J. Drennan, D. Jacob, “An Efficient Approach to Characterize Pseudo-Merohedral Twins by Precession Electron Diffraction: Application to the LaGaO3 Perovskite”, Ultramicroscopy, 109[10], 1282-1294 (2009).
[34] 王偉霖,LaGaO3鈣鈦礦結構的相變化衍生雙晶,國立中山大學材料科學研究所博士論文,高雄,2006。
[35] 詹岳霖,鈦酸鋇的晶界差排與{111}雙晶成長機制的探討,國立中山大學材料科學所碩士論文,高雄,2006。
[36] S. Li, B. Bergman, “Doping Effect on Secondary Phases, Microstructure and Electrical Conductivities of LaGaO3 Based Perovskites”, Journal of the European Ceramic Society, 29, 1139-1146 (2009).
[37] R. Polini, A. Pamio, E. Traversa, “Effect of Synthetic Route on Sintering Behaviour, Phase Purity and Conductivity of Sr- and Mg-Doped LaGaO3 Perovskites”, Journal of the European Ceramic Society, 24, 1365-1370 (2004).
[38] G. A. Tompsett, N. M. Sammes, R. J. Phillips, “Raman Spectroscopy of the LaGaO3 PhaseTransition”, Journal of Raman Spectroscopy, 30, 497-500 (1999).
[39] N, Rani, V. B. Gohel, H. C. Gupta, “Zone Center Wavenumbers of the Orthorhombic LaGaO3 Perovskite”, Journal of Raman Spectroscopy, 31, 877-880 (2000).
[40] S. N. Shkerin, D. I. Bronin, S. A. Kovyazina, V. P. Gorelov, A. V. Kuzmin, Z. S. Martemyanova, S. M. Beresnev, “Structure and Phase Transitions of (La, Sr)(Ga, Mg)O3-δ Solid Electrolyte”, Solid State Ionics, 171, 129-134 (2004).
[41] N. M. Sammes, G. A. Tompsett, R. J. Phillips, A. M. Cartner, “Characterisation of Doped-Lantjanum Gallates by X-ray Diffraction and Raman Spectroscopy”, Solid State Ionics, 111, 1-7 (1998).
[42] V. V. Kharton, A. L. Shaula, N. P. Vyshatko, F. Marques, “Electron-Hole Transport in (La0.9Sr0.1)0.98Ga0.8Mg0.2O3-δ Electrolyte: Effects of Ceramic Microstructure”, Electrochimica Acta, 48, 1817-1828 (2003).
[43] A. Skowron, P. Huang, A. Petric, “Structural Study of La0.8Sr0.2Ga0.85Mg0.15O2.825”, Journal of Solid State Chemistr, 143, 202-209 (1999).
[44] T. Y. Chen, K. Z. Fung, “Comparison of Dissolution Behavior and Ionic Conduction Between Sr and/or Mg Doped LaGaO3 and LaAlO3”, Journal of Power Sources, 132, 1-10 (2004).
[45] S. Li, Z. Li, B. Bergman, “Lanthanum Gallate and Ceria Composite as Electrolyte for Solid Oxide Fuel Eells”, Journal of Alloys and Compounds, 492, 392-395 (2010).
[46] 史美倫,AC impedance spectroscopy principles and applications,國防工業出版社,2001。
[47] B. Liu, Y. Zhang, “La0.9Sr0.1Ga0.8Mg0.2O3-δ Sintered by Spark Plasma Sintering (SPS) for Intermediate Temperature SOFC Electrolyte”, Journal of Alloys and Compounds, 458, 383-389 (2008).
[48] X. D. Zhu, N. Q. Zang, L. J. Wu, K. N. Sun, Y. X. Yuan, “Preparation and Performance of Large-Area La0.9Sr0.1Ga0.8Mg0.2O3-δ Electrolyte for Intermediate Temperature Solid Oxide Fuel Cell”, Journal of Power Sources, 195, 7583-7586 (2010).
[49] 許夢舫,以鈣鈦礦(Perovskite)結構之材料製作固態氧化物燃料電池(SOFC),國立清華大學材料科學工程學系碩士論文,新竹,2005。
[50] Y. Zheng, Y. Shi, H. Gu, L. Gao, H. Chen, L. Guo, “La and Ca co-doped ceria-based electrolyte materials for IT-SOFCs”, Materials Research Bulletin, 44, 1717-1721 (2009).
[51] Y. Zheng, H. Gu, H. Chen, L. Gao, X. Zhu, L. Guo, “Effect of Sm and Mg co-doping on the properties of ceria-based electrolyte materials for IT-SOFCs”, Materials Research Bulletin, 44, 775-779 (2009).
[52] 張耀文,氧化鉍基固態氧化物電解質摻雜異離子(Y3+、Nb5+)之研究,國立台北科技大學材料工程學系,台北,2011。
[53] B. Wu, M. Zinkevich, F. Aldinger, W. Zhang, “Ab initio structural and energetic study of LaMO3 (M = Al, Ga) perovskites”, Journal of Physics and Chemistry of Solids, 68, 570-575 (2007).
論文全文使用權限:同意授權於2016-08-23起公開