現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:La1-xSrxCoO3-δ陰極材料之電性及微觀結構分析 [以論文名稱查詢館藏系統]
論文英文名稱:Electrical properties and microstructure analysis of La1-xSrxCoO3-δ cathode material [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:材料及資源工程系研究所
畢業學年度:99
出版年度:100
中文姓名:黃鵬宇
英文姓名:Peng-Yu Huang
研究生學號:98788050
學位類別:碩士
語文別:中文
口試日期:2011-07-20
論文頁數:114
指導教授中文名:吳玉娟
口試委員中文名:洪逸明;楊永欽;邱德威;王玉瑞
中文關鍵詞:中溫型固態氧化物燃料電池固態反應法陰極材料鈣鈦礦結構
英文關鍵詞:IT-SOFC Solid state reactionCathodePerovskitestructure
論文中文摘要:本研究目的為開發中溫型固態氧化物燃料電池之陰極材料,以取代傳統高溫SOFC的陰極材料La1-xSrxMnO3-δ。La1-xSrxMnO3-δ於中溫範圍(500oC~800oC)的導電率低,故本實驗選用導電性較佳之LaCoO3為基材,本研究利用Sr的摻雜增加其導電率及離子傳導率,而研究也指出La1-xSrxCoO3-δ陰極材料於中溫的導電度比La1-xSrxMnO3-δ高,較適合作為中溫型SOFC的陰極材料。
本研究利用固態反應法,製備單摻雜La1-xSrxCoO3-δ(x = 0、0.3、0.4、0.5、0.6)之陰極試片,燒結溫度1200oC並分別持溫2小時與6小時,利用阿基米德法、XRD、SEM、TEM、直流電性、交流阻抗及熱膨脹分析儀等儀器,分析試片之相對密度、晶體結構、微觀結構、導電率、交流阻抗等。
由XRD分析中,於1200oC燒結分別持溫2小時與6小時,可發現各試片結構均為單一相鈣鈦礦結構,且隨著Sr含量的添加,於60 mole%時會由菱方結構轉為立方結構。SEM分析中,隨燒結持溫時間增加其平均晶粒尺寸也隨之增加,此外隨著Sr含量的添加,其平均晶粒尺寸也有上升的趨勢。直流電分析中,LaCoO3呈現半導體導電行為。La1-xSrxCoO3-δ(x = 0.3、0.4、0.5、0.6)呈現電子導電行為,於500oC~700oC溫度範圍,La0.6Sr0.4CoO3-δ有較高的電性,分別為500oC的2583 S/cm、600oC的2425 S/cm及700oC的2228 S/cm。
論文英文摘要:Purpose of this study was development of intermedium temperature solid oxide fuel cell (IT-SOFC) cathode materials to replace the La1-xSrxMnO3-δ which was used as traditional high-temperature SOFC cathode material. The La1-xSrxMnO3-δ shows low conductivity in the temperature range (500 oC ~ 800oC), thus we used LaCoO3 as base which shows higher conductivity. In this study, it found that electrical conductivity and ionic conductivity increased by doping Sr, and it also pointed out that the La1-xSrxCoO3-δ cathode materials showd higher conductivity than La1-xSrxMnO3-δ in 500oC to 800oC. The La1-xSrxCoO3-δ sample that is more suitable as IT-SOFC cathode material.
In this study, we used solid-state reaction method to preparae La1-xSrxCoO3-δ (x = 0, 0.3, 0.4, 0.5, 0.6) cathode material, the sintering temperature was 1200oC and held for 2 hours and 6 hours. All samples were analyized by archimedes method, X-Ray diffractometer, scanning electron micoscope, transmission electron microscope, direct current resistance, alternating current impedance, thermal expansion analyzer and other instruments, to determine the relative density, crystal structure, microstructure, conductivity and impedance.
XRD data shows, sintering temperature 1200oC /2 and 6 hours, can be found in the structure of the specimens are single phase perovskite structure. At 60 mole% substitution lanthanum with strontium, the crystal structure becomes cubic. In SEM analysis, the average grain size increased with sintering time. Therefore the average grain size also increased with strontium increased. In DC resistance analysis, LaCoO3 showed semiconducting behavior, La1-xSrxCoO3-δ (x = 0.3, 0.4, 0.5, 0.6) showed metallic conducting behavior. During 500oC ~700oC, the La0.6Sr0.4CoO3-δ-6h showd values of electrical conductivity ranging from 3260 S/cm at 500oC to 2425 S/cm at 700oC.
論文目次:摘 要 i
ABSTRACT iii
致謝 v
目錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1前言 1
1.2研究動機 2
第二章 理論及文獻回顧 3
2.1燃料電池之簡介 3
2.2固態氧化物燃料電池 5
2.3電極與電解質電化學反應 7
2.4鈣鈦礦結構 10
2.5LaCoO3陰極材料 12
2.6LaCoO3顯微結構 18
第三章 實驗方法及步驟 22
3.1試片的製備 22
3.2檢測與分析 26
3.2.1相對密度量測 26
3.2.2 X-ray繞射儀分析 28
3.2.3場發射掃描式電子顯微鏡 28
3.2.4直流電性量測 29
3.2.5交流阻抗分析 31
3.2.6熱膨脹分析 34
3.2.7穿透式電子顯微鏡分析 34
第四章 結果與討論 37
4.1相對密度分析 37
4.2XRD分析 38
4.2.1XRD峰值偏移 42
4.2.2晶格常數分析 44
4.3SEM分析 46
4.4DC電性分析 51
4.4.1燒結參數對導電率的影響 53
4.4.2活化能分析 54
4.5交流阻抗 60
4.6熱膨脹分析 66
4.7TEM顯微組織觀察與分析 70
第五章 結論 92
參考文獻 93
附錄 99
論文參考文獻:R. O. Hayre, S. W. Cha, W. Colella, F. B. Prinz,燃料電池基礎,全華圖書,2008。
V. V. Kharton, F. M. Figueiredo, A. V. Kovalevsky, A. P. Viskup, E. N. Naumovich, A. A. Yaremchenko, I. A. Bashmakov, F. M. B. Marques, “Processing, microstructure and properties of LaCoO3-δ ceramics”, Journal of the European Ceramic Society, 21, 2301-2309 (2001).
S. J. Skinner, “Recent advances in Pervoskite-type materials for solid oxide fuel cell cathode”, International Journal of Inorganic Material, 3 113-121 (2001).
黃鎮,江燃料電池,台北,滄海圖書,2008。
衣寶廉,燃料電池-原理與應用,台北,五南圖書,2007。
J. Li, S Wang, Z. Wang, R. Liu, T. Wen, Z. Wen, “La0.84Sr0.16MnO3-δ cathodes impregnated with Bi1.4Er0.6O3 for intermediate-temperature solid oxide fuel cells”, Journal of Power Sources, 194, 625-630 (2009).
H. Ullmann, N. Trofimenko, F. Tietz, D. Stover, A. A. Khanlou, “Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes”, Solid State Ionic, 138, 79-90 (2000).
Y. Takeda, R.kanno, M. Noda, Y. Tomida, and O. Yamamoto, “Cathodic Polarization Phenomena of Perovskite Oxide Electrodes with Stabilized Zirconia”, Journal of The Electrochemical Society, 134, 2656-2661 (1987).
K. B. Yoo, G. M. Choi, “Cathodic overpotential of La0.6Sr0.4CoO3 and its composite cathodes LSC-LSGM on LaGaO3-based fuel cell”, Journal of the European Ceramic Society, 27, 4211-4214 (2007).
余樹楨,晶體之結構與性質,台北,渤海堂文化公司,2007。
P. Hjalmarsson, M. Sogaard, M. Mogensen, “Electrochemical behaviour of (La1-xSrx)sCo1-yNiyO3-δ as porous SOFC cathodes”, Solid State Ionic, 180, 1395-1405 (2009).
A. N. Petrov, O. F. Kononchuk, A. V. Andreev, V. A. Cherepanov, P. Kofstad, “Crystal structure, electrical and magnetic properties of La1-xSrxCoO3-y”, Solid State Ionic, 80, 189-199 (1995).
G. Thornton, B. C. Tofield, A. W. Hewat, “A Neutron Diffraction Study of LaCoO3 in the Temperature Range 4.2 < T < 1248K”, Journal of Solid State Chemistry, 61, 301-307 (1986).
O. Haas, R. P. W. J. Struis, J. M. McBreen, “Synchrotron X-ray absorption of LaCoO3 perovskite”, Journal of Solid State Chemistry, 177, 1000-1010 (2004).
Y. Tao, J. Shao, J. Wang, W. G. Wang, “Synthesis and properties of La0.6Sr0.4CoO3-δ nanopowder”, Journal of Power Sources, 185, 609-614 (2008).
M. A. Senaris-Rodriguez, J. B. Goodenough, “Magnetic and Transport Properties of System La1-xSrxCoO3-δ (0 < x ≤ 0.50)”, Journal of Solid State Chemistry, 118, 323-336 (1995).
A. Mineshige, M.Inaba, T.Yao, Z.Ogumi, K.Kikuchi, M.Kawase, “Crystal Structure and Metal-Insulator Transition of La1-xSrxCoO3”, Journal of Solid State Chemistry, 121, 423-429 (1996).
A. Mineshige, M. Kobune, S. Fujii, Z. Ogumi, M. Inaba, T. Yao, K.Kikuchi, “Metal-Insulator Transition and Crystal Structure of La1-xSrxCoO3 as Functions of Sr-Content, Temperature, and Oxygen Partial Pressure”, Journal of Solid State Chemistry, 142, 374-381 (1999).
P. E. Vullum, H. L. Lein, M. A. Einarsrud, T. Grande, R. Holmestad, “TEM observations of rhombohedral and monoclinic domains in LaCoO3-based ceramics”, Philosophical Magazine, 88, 1187-1208 (2008).
J. C. Walmsley, A. Bardal, K. Kleveland, M. A. Einarsrud, T. Grande, “Microstructure and the influence of spontaneous strain in LaCoO3, La0.8Sr0.2CoO3 and La0.8Ca0.2CoO3”, Journal of Materials Science, 35, 4251-4260 (2000) .
J. Zhang, Z. L. Wang, “Tetragonal domain structure and magnetoresistance of La1-xSrxCoO3”, The American Physical Society, 54, 1153-1158 (1996).
R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides”, Acta Crystallographica Section, 32, 751-767 (1976).
B. D. Cullity, S. R. Stock, Elements of X-ray Differaction, New Jersey, Pearson Education Intenational, 2001, pp. 633-634.
J. B.Torrance, P. Lacorre, A. I. Nazzal, E. J. Ansaldo, C. Niedermayer, “Systematic study of insulator-metal transitions in perovskite RniO3 (R = Pr, Nb, Sm, Eu) due to closing of charge-transfer gap”, The American Physical Society, 45, 8219-8212 (1992).
K. Zhang, L. Ge, R. Ran, Z. Shao, S. Liu, “Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs”, Acta Materialia, 56, 4876-4889 (2008).
S. Pathak, J. Kuebler, A. Payzant, N. Orlovskaya, “Mechanical behavior and electrical conductivity of La1-xCaxCoO3 (x = 0, 0.2, 0.4, 0.55) perovskites”, Journal of Power Sources, 195, 3612-3620 (2010).
S. P. Jiang, “Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review”, Journal of Materials Science, 43, 6799-6833 (2008).
M. H. Hung, M. V. Madhava Rao, D. S. Tsai, “Microstructures and electrical properties of calcium substituted LaFeO3 as SOFC cathode”, Materials Chemistry and Physics, 101, 297-302 (2007).
H. C. Yu, K. Z. Fung, “La1-xSrxCuO2.5-δ as new cathode materials for intermediate temperature solid oxide fuel cells”, Materials Research Bulletin, 38, 231-239 (2003).
A. Petric, P. Huang, F. Tietz, “Evaluation of La-Sr-Co-Fe-O perovskites for solid oxide fuel cells and gas separation membranes”, Solid State Ionics, 135, 719-725 (2000).
B. Lin, J. Chen, Y. Ling, X. Zhang, Y. Jiang, L. Zhao, X. Liu, G. Meng, “Low-temperature solid oxide fuel cells with novel La0.6Sr0.4Co0.8Cu0.2O3-δ perovskite cathode and functional graded anode”, Journal of Materials Science, 195, 1624-1629 (2010).
F. Tietz, A. Schmidt, M. Zahid, “Investigation of the quasi-ternary system LaMnO3-LaCoO3-LaCuO3—I: the series La(Mn0.5Co0.5)1- xCuxO3-δ”, Journal of Solid State Chemistry, 177, 745-751 (2004).
F. H. van Heuvein, H. J. M. Bouwmeester, “Electrode Properties of Sr-Doped LaMnO3, on Yttria-Stabilized Zirconia”, Journal of The Electrochemical Society, 144, 134-140 (1997).
J. Liu, A. C. Co, S. Paulson, V. I. Birss, “Oxygen reduction at sol-gel derived La0.8Sr0.2Co0.8Fe0.2O3 cathodes”, Solid State Ionics, 177, 377-387 (2006).
H. Hayashi, T. Saitou, N. Maruyama, H. Inaba, K. Kawamura, M. Mori, “Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents”, Solid State Ionics, 176, 613-619 (2005).
T. Inoue, K. Eguchi, T. Setoguchi, H. Arai, “Cathode and Anode Materials and the reaction kinetics for the Solid Oxide Fuel Cell”, Solid State Ionics, 40-41, 407-410 (1990).
H. Hayashi, M. Kanoh, C. J. Quan, H. Inaba, S. Wang, M. Dokiya, H. Tagawa, “Thermal expansion of Gd-doped ceria and reduced ceria”, Solid State Ionics, 132, 227-233 (2000).
H. L. Lein, K. Wiik, T. Grande, “Thermal and chemical expansion of mixed conducting La0.5Sr0.5Fe1-xCoxO3-δ materials”, Solid State Ionics, 177, 1795-1798 (2006).
P. Hjalmarsson, M. Søgaard, A. Hagen, M. Mogensen, “Structural roperties and electrochemical performance of strontium- and nickel-substituted lanthanum cobaltite”, Solid State Ionics, 179, 636-646 (2008).
R. V. Wandekar, B. N. Wani, S. R. Bharadwaj, “Crystal structure, electrical conductivity, thermal expansion and compatibility studies of Co-substituted lanthanum strontium manganite system”, Solid State Sciences, 11, 240-250 (2009).
M. Mori, Y. Hiei, N. M. Sammes, G. A. Tompsett, “Thermal-Expansion Behaviors and Mechanisms for Ca- or Sr-Doped Lanthanum Manganite Perovskites under Oxidizing Atmospheres” Journal of The Electrochemical Society, 147, 1295-1302 (2000).
M. Kuhn, S. Hashimoto, K. Sato, K. Yashiro, J. Mizusaki, “Oxygen nonstoichiometry, thermo-chemical stability and lattice expansion of La0.6Sr0.4FeO3-δ”, Solid State Ionics, 195, 7-15 (2011).
Y. Guo, D. Chen, H. Shi, R. Ran, Z. Shao, “Effect of Sm3+ content on the properties and electrochemical performance of SmxSr1-xCoO3-δ (0.2 ≤ x ≤ 0.8) as an oxygen reduction electrodes on doped ceria electrolytes”, Electrochimica Acta, 56, 2870-2876 (2011).
F. Wang, Q. Zhou, T. He, G. Li, H. Ding, “Novel SrCo1-yNbyO 3-δ cathodes for intermediate-temperature solid oxide fuel cells”, Journal of Power Sources, 195, 3772-3778 (2010).
論文全文使用權限:同意授權於2016-08-25起公開