現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:應用爆震波狀態方程式(EOS)與3DEC探討爆破荷載在不連續面下之動態行為 [以論文名稱查詢館藏系統]
論文英文名稱:The Application of the EOS & 3DEC on the Dynamic Behavior of a Discontinuity under Explosive Loading [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:材料及資源工程系所
中文姓名:陳志銘
英文姓名:Chin-Ming Chen
研究生學號:92338019
學位類別:碩士
語文別:中文
口試日期:2005-07-12
論文頁數:87
指導教授中文名:丁原智
口試委員中文名:俞旗文;王文生;李進興
中文關鍵詞:3DEC狀態方程式(EOS)爆震波無因次分析爆破荷載
英文關鍵詞:Equation of state(EOS)Detonation Wave3DECExplosive Loading
論文中文摘要:爆震波與岩石破碎的行為極為複雜,基於地質觀點,控制爆破的參數很難以量化評估,目前爆破工程多藉由炸藥爆破時能量轉換的觀點,以及爆震波和衝擊波傳遞時質量、能量和動量守恆的理論,作為探討爆破震動參數的基礎。而在探討質量、能量和動量守恆的理論時,速度成為不可或缺的重要參數,如何得到爆震速度成為研究爆震波特性的首要課題。
目前國內可量測爆震波速度的儀器並不普遍,因此爆震波速度值得之不易,想利用爆震波速度來探討爆破震動的特性更是難上加難,本文將依據理想氣體方程式、流體動力學、熱力學、理想氣體多變定律和相關的經驗公式,結合衝擊波和爆震波傳遞時質量、能量和動量守恆的理論,推導爆震波的狀態方程式,並藉由爆震波的狀態方程式了解爆震波的特性及其應用。
爆震波狀態方程式的應用方面,可利用爆震波的狀態方程式求得爆震速度與質點速度,再與1985年S. M. Day的經驗方程式配合,藉由3DEC動態分析中的無因次分析來探討爆破荷載在不連續面下的動態行為,並由3DEC動態分析所得的Day爆破荷載經驗方程式及本文爆震波狀態方程式之速度歷史曲線和滑動歷史曲線作比較,進而驗證本文爆震波狀態方程式的準確性。
論文英文摘要:Engineering blasting has the advantages of high fragmentation efficiency and fast reaction which is widely used in most of mining and tunneling projects. Generally, the detonation Wave and stress wave will transmits outward in the rock from the center of energy source after explosive is initiated. Therefore, the characteristics and behavior of the shock wave need to be analyzed thoroughly.
When discuss the transmission of the shock wave, the mass and momentum balance need to be considered as the base for various blasting parameters. The theory of balance is composed with five parameters such as pressure, particle velocity. Detonating velocity, specific volume and density and all needed to be included into the equation of state.
Most of the former research were based upon experienced equation derived from mass, energy and momentum. Besides the previous research finding, the ideal gas equation and ideal gas, fluid dynamics and thermal dynamics were also included in the derivation of the equation of state(EOS) of the detonation Wave. The derived equation has also be examined using Ordnace Corp of US and proved to be reasonable.
3DEC (3 Dimensional Distinct Element Code) is a numerical analysis tool to analyze the dynamic behavior of a discontinuity under explosive loading. So The equation of state(EOS) of the detonation Wave and 3DEC is used to simulate the dynamic behavior of a discontinuity under explosive loading, which may be more realistic than other analysis method.
論文目次:中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1前言 1
1.2研究目的及動機 2
1.3研究方法 3
第二章 文獻探討 4
2.1相關爆破理論 4
2.2爆破震動的基本特性 6
2.2.1 爆破碎裂岩石之破壞機制 6
2.2.2 爆破震動之特性 6
2.3 Rankine-Hugoniot方程式 9
2.4爆破震動效應與爆破荷載的探討 10
2.4.1 爆破地震與自然地震的差異 10
2.4.2 爆破震動速度 11
2.4.3 S. M. Day經驗方程式 12
2.5 S波和爆震波速度數學式之關係 15
第三章 爆炸與爆震波的狀態方程式 16
3.1爆炸(Explosive) 16
3.2爆炸的引發 16
3.3爆震波(Detonation Wave)數學式的發展歷程 17
第四章 爆震波狀態方程式(EOS)的發展 19
4.1由簡化的橫向圓柱活塞模型切入 19
4.2由流體力學的處理來探討衝擊波 21
4.2.1 流體力學的定義 21
4.2.2 流體力學的描述與分類 21
4.2.3 流體運動在工程科學中之應用 22
4.2.4 流體力學基本假設 24
4.2.5 修正由流體力學假設所得的狀態方程式(EOS) 27
4.2.5.1 爆震(Detonation) 27
4.2.5.2 守恆方程式 28
4.3 本文對前人爆震波狀態方程式之修正 29
4.3.1 修正一:氣體多變定律 29
4.3.2 修正二:熱力學第一定律(熱與功的互換) 31
4.4氣體爆破狀態方程式的使用方式及優點 33
4.5氣體爆破狀態方程式的驗證 35
第五章 分析方法及程式說明 44
5.1 3DEC程式理論概述 44
5.2塊體接觸型態的判別 45
5.3接觸應力的計算 49
5.4節理行為模式 55
5.5時階之決定 55
5.6 3DEC的特點 57
第六章 EOS的應用與驗證 58
6.1 基本假設 58
6.2 3DEC動態分析的應用 60
6.3 狀態方程式(EOS)的應用 61
6.3.1 爆破荷載之狀況探討 62
6.3.2 爆震波狀態方程式(EOS)與3DEC結合 63
6.3.3 模型的建立 66
6.3.4 連續介質與節理的性質 68
6.3.5 因次分析及無因次分析的重要性 71
6.3.6 經驗方程式求解 74
6.3.7 3DEC動態分析的設定 77
6.3.8本文爆震波狀態方程式解與Day爆破荷載經驗方程式解
之比較: 80
第七章 結論與建議 82
7.1結論 82
7.2建議 84
參考文獻 85
論文參考文獻:[1] 黃立政,流體力學原理與應用,台北市:全華科技圖書股份有限公司,1999,第四章,第1-55頁。
[2] 郭冠霖、王榮英、陳寶祺譯,物理化學,台北市:學富文化事業有限公司,2000,第537-541頁。
[3] 林國慶、蘇國欽譯,流體力學及其工程上之應用,台北:書林出版公司,1981,第1-16頁。
[4] 孫方鐸、苑秀麟,基本熱力學,台北市:東華書局,1992,第61-73頁。
[5] 胡大文譯,氣體動力學,台南市:復文書局,1985,第8-86頁。
[6] 歐陽績譯,空氣動力學,台北市:國立編譯館,1984,第127-131頁。
期刊論文
[7] 張瑞麟,「爆破工程之震動」,地工技術,61期,1997,第67-77頁。
[8] 王祥厚、李明勇,爆破地震強度與爆破地震荷載的探討,貴州工業大學採礦系,編號1009-0193(2000)02-0018-05,貴州 貴陽,2000。
[9] S. M. Day , "Test Problem for Plane Strain Block Motion Codes,〞S-Cubed Memorandum, May 1, 1985.
[10] H. Kolsky, "Stress Wave in Solids," Hyperdynamics, Santa Fe, 1975.
[11] R. J. Wasley, "Stress Wave Propagation in Solids," NY, 1973.
[12] W. C. Davis, "Sci. Am., " 255(5), 1987.
[13] W. J. M. Rankine, "Phill. Trans. Roy. Soc. Lond., " 160, 1870.
[14] H. J. Hugoniot, "J. L’Ecole Polytech., " 58, 1989.
[15] A. Popolato, "in Behavior and Utilization of Explosives in engineering Design, " ASME Albuquerque, New Mexico, 1972.
[16] D. J. Steinberg , "Equation of State and Strength Properties of Selected Materials, " Report No. UCRL-MA-106439, Lawrence Livermore National Laboratory, Livermore, CA, 1991.
[17] R. E. Duff and E. Houston, "J. Chen Phys., " 23(1955), 1268.
[18] Rimer, N., S. M. Day, G. A. Hegemier, H. E. Read, S. K. Garg, and S. Peyton, "Effect of Pore Fluid Pressure on Explosive Ground Motions in Low Porosity Brittle Rocks, " DNA-TR-85-245, July, 1984.
[19] M. A. Cook, "The Science of High Explosives, " Reinhold, New York, 1958.
[20] D. J. Steinberg, "Equation of State and Strength Properties of Selected Materials," Report No. UCRL-MA-106439, CA, 1991.
[21] J. L Stevens, "Estimation of scalar moments from explosion-generated surface waves," Bull. Seism. Soc. Am., v. 76, 1986, pp. 123-151.
[22] J. O. Erkman, A. B. Christensen, and G. R. Fowles, "Attenuation of Shock Waves in Solids, " Technical Report No. AFWL-TR-66-72, Stanford, 1996.
[23] G. B. Kistiakowski and E. B. Wilson, "The Hydrodynamic Theory of Detonation and Shock Waves, " Report No. 114, OSRD, 1941.
[24] J. R. Rempel, D. N. Schmidt, J. O. Erkman, and W. M. Isbell, "Shock Attenuation in Solid and Distended Materials, "Technical Report No. WL-TR-65-119, Stanford, 1966.
[25] C. H. Johansson, P. A. Persson, "Detonics of High Explosives," Academic, New York, 1970.
[26] K. .F. Graff, "Wave Motion in Elastic Solids," Ohio University Press, Columbus, 1975.
[27] R. Cheret, "Detonation of Condensed Explosive, " Springer, NY, 1992.
[28] W. Fickett and W. C. Davis, "Detonation, " University of California Press, 1979.
[29] B. Zeldovich and S. A. Kompaneets, "Theory of Detonation," Academic, NY, 1960.
[30] P. A. Persson, N. Lundborg & C. H. Johansson, "The Basic Mechanism in Rock Blasting, " Proceedings of the 2nd Congress of the International Society for Rock Mechanics, Belgrade, 1970.
[31] G. Harries, "A Mathematical Model of Cratering and Blasting," National Symposium on Rock Fragmentation, Adelaide, 1973.
[32] Wang Xuguang, "Rock Fragmentation by Blasting," Proceedings of the 7th International Symposium, 2002.
[33] E. Hoek & E. T. Brown, "Underground Excavations in Rock," The Institution of Mining and Metallurgy, 1980.
[34] R. L. Ash, "The Influence of Geological Discontinuities on Rock Blasting," Unpublished doctoral dissertation, University of Minnesota, 1973.
[35] E. P. Chen & L. M. Taylor, "Fracture of Brittle Rock under Dynamic Loading Condition," 1985.
[36] H. Joseph Burchell, "Explosives & Rock Blasting," Maple Press, Dallas TX, Atlas Powder, 1987.
[37] S. M. Day, McLaughlin, K. L., T. G. Barker, B. Shkoller, and J. L. Stevens, "Effects of subduction zone structure on explosion-generated Rayleigh waves: 3D numerical simulations, " Geophys. J. Int., Vol. 111, 1992. pp. 291-308.
[38] J. Lemos, " A Distinct Element Model for Dynamic Analysis of Jointed Rock with Application to Dam Foundations and Fault Motion, " Ph.D. Thesis, University of Minnesota, June, 1987.
論文全文使用權限:不同意授權