現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:利用方位角掃瞄技術雕刻非均向性光學薄膜 [以論文名稱查詢館藏系統]
論文英文名稱:Sculptured anisotropic optical thin films fabricated by Phisweep technique [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:電資學院
系所名稱:光電工程系研究所
中文姓名:林佳鋒
英文姓名:Chia-Feng Lin
研究生學號:94658039
學位類別:碩士
語文別:中文
口試日期:2007-05-17
論文頁數:51
指導教授中文名:任貽均
口試委員中文名:陳學禮;林麗瓊
中文關鍵詞:斜向沈積非均向性薄膜光學特性
英文關鍵詞:glancing angle depositionanisotropic thin filmoptical properties
論文中文摘要:本篇論文利用方位角掃瞄技術製鍍非均向性光學薄膜,藉由基板來回掃瞄能破壞自我遮蔽效應的非均向性,改善傾斜柱狀結構在垂直沈積平面方向發生扇形擴張的現象。掃瞄角的引入使得沈積角不再同時決定孔隙率和柱狀傾斜角,而入射通量與基板運轉之間的幾何關係以向量分析做拆解,得到了等效傾斜角為沈積角和掃瞄角的數學關係,所以藉著沈積角與掃瞄角的搭配能設計出不同的非均向性薄膜。在實驗上,以氟化鎂為蒸鍍材料,使用方位角掃瞄技術製鍍不同單層柱狀結構的非均向性薄膜,並且量測光學特性以建立相對應的光學常數。
論文英文摘要:In this work, the Phisweep technique is applied in coating anisotropic films. During the deposition, the periodical sweep of the substrate will break the anisotropic self-shadowing effect that causes inhomogeneous microstructure and improve the fan-out phenomenon. By controlling the deposition angle and the sweep angle, the porosity and columnar tilt angle can be controlled separately. According to the flux vector analysis, the relation between deposition angle , columnar tilt angle and sweep angle can be derived. In experiment, Phisweep technique is applied to prepared anisotropic MgF2 thin films on the BK7 substrate in the thermal coater. The optical constants of the films are measured by polarization conversion reflectance.
論文目次:中文摘要……………………………………………………………………….…….Ⅰ
英文摘要……………………………………………………………………….…….Ⅱ
誌謝…………………………………………………………………………….…….Ⅲ
目錄…………………………………………………………………………….…….Ⅳ
表目錄………………………………………………………………………….…….Ⅵ
圖目錄…………………………………………………………………………...…...Ⅶ
第一章 緒論…………………………………………………………..........................1
1.1 非均向性薄膜簡介…………………………………………………………….1
1.2 文獻回顧……………………………………………………………………….2
1.2.1 靜態的斜向沈積技術……………………………………………………..2
1.2.2 動態的斜向沈積…………………………………………………………..3
1.2.3 結構區域模型……………………………………………………………..5
1.2.4 電腦模擬…………………………………………………………………..7
1.3 薄膜的生長機制…………………………………………………………….....8
1.3.1自我遮蔽效應……………………………………………………………...8
1.3.2 表面擴張…………………………………………………………………10
1.4 沈積角與柱狀傾斜角的關係………………………………………………...10
1.5 非均向性薄膜的新穎光學特性與應用……………………………………...11
1.6研究動機………………………………………………………………………12
1.6.1 扇形擴張…………………………………………………………………12
1.6.2 柱狀傾斜角和孔隙率的耦合……………………………………………14
1.6.3 建立氟化鎂非均向性薄膜的光學常數對應表…………………………15
第二章 研究理論……………………………………………………………………16
2.1 方位角掃瞄技術…………………………………………………………….16
2.1.1 方位角掃瞄技術的運轉方法…………………………………………..16
2.1.2 向量分析…………………………………………………………...…..19
2.2 偏極轉換量測法………………………………………………………….22
2.2.1 非均向性薄膜的偏極轉換角頻譜…………………………………….23
2.2.2 偏極轉換量測單層柱狀薄膜………………………………………….25
第三章 實驗………………………………………………………………………...26
3.1 實驗過程 3.1.1 基板清潔……………………………………………………………….26
3.1.2 蒸鍍系統……………………………………………………………….27
3.1.3 製鍍架構及參數設計………………………………………………….28
3.2 非均向性薄膜的量測……………………………………………………..29
3.2.1 光譜儀量測…………………………………………………………….30
3.2.2 偏極轉換量測………………………………………………………….31
3.3 分析方法……………………………………………………………………33
第四章 結果與討論………………………………………………………………...34
4.1 扇形擴張的改善……………………………………………………………34
4.2 方位角掃瞄技術調製柱狀傾角的能力……………………………………38
4.3 方位角掃瞄技術調製折射率的能力………………………………………44
第五章 結論………………………………………………………………………...47
參考文獻…………………………………………………………………………….48
論文參考文獻:[1] Gish, D.A., Kiema, G.K., Jensen, M.O., Brett, M.J., "Dye sensitized solar cells using nanostructured thin films of titanium dioxide,"Materials Research Society Symposium Proceedings, vol. 836, art. no. L5.13, pp. 131-136 (2005)
[2] Kennedy, S.R., Brett, M.J., "Porous broadband antireflection coating by glancing angle deposition, "Appl. Optics. Vol. 42 (22), pp. 4573-4579 (2003)
[3] Kennedy, S.R., Brett, M.J., Miguez, H., Toader, O., John, S., "Optical properties of a three-dimensional silicon square spiral photonic crystal, "Photon. Nanostruct,vol. 1 (1), pp. 37-42 (2003)
[4] K. Kaminska, K. Robbie, "Birefringent Omnidirectional Reflector," Appl. Optics, Vol. 43, Issue 7, pp. 1570-1576 (2004)
[5] Steele, J.J., van Popta, A.C., Hawkeye, M.M., Sit, J.C., Brett, M.J., "Nanostructured gradient index optical filter for high-speed humidity sensing, " Sensor Actuat. B-Chem. Vol. 120 (1), pp. 213-219 (2006)
[6] Van Popta, A.C., Hawkeye, M.M., Sit, J.C., Brett, M.J., "Gradient-index narrow-bandpass filter fabricated with glancing-angle deposition, "Optics Letters vol. 29 (21), pp. 2545-2547 (2004)
[7] A. Kundt, "On the Double Refraction of Light in Metal Layers Which have been Prepared by Kathode Sputtering," Ann. Phys. Chem., vol. 27, pp. 59-71. (1886)
[8] H. Konig and G. Helwig, "The Structure of Obliquely Evaporated Films and Their Influence on the Formation of Sub-Microscopic Surface Irregularities," Optik., vol. 6, pp.111. (1950)
[9] L. Holland, "The effect of vapour incidence on the structure of evaporated aluminum films," J. Opt. Soc. Am., vol. 43, pp. 376. (1953)
[10] D. O. Smith, "Anisotropy in Permalloy Films," J. Appl. Phys., vol. 30, pp. 2645. (1959)
[11] T. G. Knorr and R. W. Hoffman, "Dependence of Geometric Magnetic Anisotropy in Thin Iron Films," Phys. Rev., vol. 113, pp. 1039. (1959)
[12] J. M. Nieuwenhuizen and H. B. Haanstra , "Microfractography of thin films" , Philips Tech. Rev., vol. 27 , pp. 87-91 (1966)
[13] N. O. Young and J. Kowal, "Optically active fluorite films," Nature, vol. 183, pp.104-105. (1959).
[14] T. Motohiro and Y. Taga, "Thin Film Retardation Plate by Oblique Deposition," Appl. Optics, vol. 28, pp. 2466. (1989)
[15] K. Robbie, L.J. Friedrich, S. K. Dew, T. Smy, M.J. Brett, "Fabrication of thin films with highly porous microstructures," J. Vac. Sci. Technol., A13, pp. 1032. (1995)
[16] K. Robbie, M. J. Brett, A. Lakhtakia, "First thin film realization of a helicoidal bianisotropic medium," J. Vac. Sci. Technol., A13, pp. 2991. (1995)
[17] I.J. Hodgkinson, Q.H. Wu, M.J. Brett, and K. Robbie, "Vacuum deposition of biaxial films with surface-aligned principal axes and large birefringence Dn", in Optical Interference Coatings, vol. 9, 104-106. (1998)
[18] Hodgkinson, I., Wu, Q.H., "Serial bideposition of anisotropic thin films with enhanced linear birefringence, " Appl. Optics, vol. 38, pp. 3621-3625. (1999)
[19] Ye, D.-X., Zhao, Y.-P., Yang, G.-R., Zhao, Y.-G., Wang, G.-C., Lu, T.-M., "Manipulating the column tilt angles of nanocolumnar films by glancing-angle deposition, " Nanotechnology, vol. 13, pp. 615-618. (2002)
[20] S.B. Chaney, S. Shanmukh, R.A. Dluhy, Y.P. Zhao, "Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates, " Appl. Phys. Lett., vol. 87, pp. 031908. (2005)
[21] M. Suzuki, W. Maekita, K. Kishimoto, S. Teramura, K. Nakajima, K. Kimura, Y. Taga, "Direct formation of arrays of prolate Ag nanoparticles by dynamic oblique deposition," JPN. J. APPL. PHYS. 2, vol. 44 (1-7), pp. L193-L195. (2005)
[22] B.A. Movchan, A.V. Demchishin, "Study of the structure and properties of thick vacuum condensates of Ni, Ti, W, Al2O3, and ZrO2," Phys. Met. Metallogr. USSR, vol. 28, pp. 83. (1969)
[23] Thornton, John A., "HIGH RATE THICK FILM GROWTH," Annu. Rev. Mater. Sci., vol. 7, pp. 239-260.(1977)
[24] R. Messier, A.P. Giri, R.A. Roy, "Revised structure zone model for thin film physical structure," J. Vac. Sci. Technol. A, vol. 2, pp. 500-503. (1984)
[25] C.R.M. Grovenor, H.T.G. Hentzell, D. A. Smith, "The development of grain structure during growth of metallic films," Acta Metall., vol. 32, pp. 773–781 (1984).
[26] D. Henderson, M.H. Brodsky, P. Chaudhari, "Simulation of structural anisotropy and void formation in amorphous thin films," Appl. Phys. Lett. vol. 25, pp. 641. (1974).
[27] A.G. Dirks, H.J. Leamy "Columnar microstructure in vapour-deposited thin films," Thin Solid Films, vol. 47, pp. 219–233. (1977)
[28] Meakin P and Krug J, "Three-dimensional ballistic deposition at oblique incidence," Phys. Rev. A, vol. 46, pp. 3390–9. (1992)
[29] B. Yang, B.L. Walden, R. Messier, W.B. White,"Computer simulation of the cross-sectional morphology of thin films," Proc. SPIE, vol. 821, pp. 68-76. (1987)
[30] Meakin, P., "Ballistic deposition into inclined surfaces," Phys. Rev. A, vol. 38, pp. 994-1004. (1988)
[31] Abelmann, L., Lodder, C., "Oblique evaporation and surface diffusion, "
Thin Solid Films, vol. 305 (1-2), pp. 1-21. (1997)
[32] Mueller, K.H., "Molecular dynamics and collision cascade studies of ion-assisted thin film deposition," J. Vac. Sci. Technol. A, vol. 5, p. 2161. (1987)
[33] Mueller, K.H., "Stress and microstructure of sputter deposited thin films: Molecular dynamics investigations,"J. Appl. Phys., vol. 62, pp. 1796-1799. (1987)
[34] Mueller, K.H., "Role of incident kinetic energy of adatoms in thin film growth," Surface Science, vol. 184, pp. L375-L382. (1987)
[35] Smith, R.W., Srolovitz, D.J., "Void formation during film growth: A molecular dynamics simulation study, " Journal of Applied Physics, 79 (3), pp. 1448-1457. (1996)
[36] Urbassek, H.M., "Molecular-dynamics simulation of sputtering
Nuclear Instruments and Methods in Physics Research, " Section B: Beam Interactions with Materials and Atoms, vol. 122 (3), pp. 427-441. (1997)
[37] Andia, Pedro C., Costanzo, Francesco, Gray, Gary L., "On the estimation of intrinsic stresses and elastic moduli in thin films, "Proceedings of SPIE - The International Society for Optical Engineering, vol. 4097, pp. 280-290. (2000)
[38] Hamaguchi, S., Rossnagel, S.M., "Simulations of trench-filling profiles under ionized magnetron sputter metal deposition, "Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, vol. 13 (2), pp. 183-191. (1995)
[39] Hamaguchi, S., Rossnagel, S.M., "Surface-topography simulations of ionized sputter metal deposition," Materials Research Society Symposium - Proceedings, 389, pp. 113-117. (1995)
[40] Hamaguchi, S., Rossnagel, S.M., "Liner conformality in ionized magnetron sputter metal deposition processes," Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 14 (4), pp. 2603-2608. (1996)
[41] Nichols, C.A., Rossnagel, S.M., Hamaguchi, S., "Ionized physical vapor deposition of Cu for high aspect ratio damascene trench fill applications,"
Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 14 (5), pp. 3270-3275. (1996)
[42] Vick, D., Friedrich, L.J., Dew, S.K., Brett, M.J., Robbie, K., Seto, M., Smy, T., "Self-shadowing and surface diffusion effects in obliquely deposited thin films," Thin Solid Films, 339 (1-2), pp. 88-94. (1999)
[43] S. Lichter and J. Chen, "Model for Columnar Microstructure of Thin Solid Films,"Phys. Rev. Lett., vol. 56, pp.1396. (1986)
[44] R. Fiedler Und and G. Schirmer, "Säulenwchstum bei aufgedampften schichten,"Thin Solid Films, Volume 167, Issues 1-2, , pp. 281-290. (1988)
[45] Tait, R.N., Smy, T., Brett, M.J., "Modelling and characterization of columnar growth in evaporated films," Thin Solid Films, 226 (2), pp. 196-201. (1993)
[46] Hodgkinson, I., Wu, Q.H., Hazel, J.,"Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,"Applied Optics, 37 (13), pp. 2653-2659. (1998)
[47] Horowitz, F., Macleod, H.A., “Determination of principal refractive indices of birefringent films,” Optical Interference Coatings,vol.6, 203-206 (1988).
[48] Kennedy, S.R., Brett, M.J.,"Advanced techniques for the fabrication of square spiral photonic crystals by chancing angle deposition,"Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 22 (3), pp. 1184-1190. (2004)
[49] Robbie K., Sit J.C., Brett M.J.," Advanced techniques for glancing angle deposition," Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 16 (3), pp. 1115-1122. (1998)
[50] Jensen, M.O., Brett, M.J.,"Porosity engineering in glancing angle deposition thin films," Applied Physics A: Materials Science and Processing, 80 (4), pp. 763-768. (2005)
[51] Gish, D.A., Summers, M.A., Brett, M.J.,"Morphology of periodic nanostructures for photonic crystals grown by glancing angle deposition," Photonics and Nanostructures - Fundamentals and Applications, 4 (1), pp. 23-29. (2006)
[52] Yi-Jun Jen and Cheng-Lung Chiang, "Enhanced polarization conversion for an anisotropic thin film," Optics Communications, vol 265, pp.446-453. (2006)
論文全文使用權限:不同意授權