現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:非均向二氧化矽光學薄膜之製鍍與應用 [以論文名稱查詢館藏系統]
論文英文名稱:The application and fabrication of an optical anisotropic SiO2 thin film [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:電資學院
系所名稱:光電工程系研究所
出版年度:97
中文姓名:廖一鴻
英文姓名:Yi-Liao Hong
研究生學號:95658033
學位類別:碩士
語文別:中文
口試日期:2008-06-26
論文頁數:62
指導教授中文名:任貽均
口試委員中文名:劉旻忠;陳學禮
中文關鍵詞:二氧化矽非均向性薄膜偏極轉換表面電漿
英文關鍵詞:silicon dioxideanisotropic thin filmspolarization conversionsurface plasma
論文中文摘要:本篇論文使用電子槍蒸鍍以斜向沈積技術,製鍍不同沈積角度下的SiO2非均向性薄膜,使用稜鏡耦合量測非均向性薄膜的偏極轉換反射率,以Berreman矩陣計算並擬合實驗值,求得非均向性薄膜的光學常數。
利用非均向性薄膜的偏極轉換與金屬薄膜的表面電漿共振現象,而製鍍三層薄膜組態(稜鏡/非均向性薄膜/金屬/均向性薄膜/空氣),在調制第三層均向性薄膜厚度,可使表面電漿共振角度位移,則表面電漿共振角度可與偏極轉換角度互相耦合,使TM模態與TE模態皆可產生表面電漿共振。
論文英文摘要:In this work, SiO2 anisotropic thin films were fabricated by the glancing angle deposition (GLAD) technique with various deposition angles in the electron-beam gun evaporation system. The polarization conversion reflection (PCR) of the anisotropic film is measured by coupling the film with high-index prism, and can be calculated with the Berreman Matrix. The optical constants are derived by fitting the measured PCR angular spectrum curves.
The film thickness of the third layer is designed to excite both the surface plasmon resonance (SPR) and polarization conversion reflection in the three-layered configuration (the prism/ anisotropic thin film/ metal film/ isotropic film).This work proposes that a tilt columnar thin film in the configuration trigger the TE-polarized incident light to excite SPR. By arranging an anisotropic thin film between a coupling prism and a metal film enables TM-polarized and TE-polarized waves simultaneously to excite surface plasmons.
論文目次:目錄

摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii

第一章 文獻回顧 1
1.1 前言 1
1.2 二氧化矽薄膜 1
1.3 斜向沈積技術 2
1.5 表面電漿 3
1.6 偏極轉換 6
1.6 動機 8
第二章 原理 9
2.1 非均向性薄模計算 9
2.1.1 光學薄膜軸態定義 9
2.1.2 Fresnel’s 方程式 11
2.1.3 薄膜矩陣法 12
2.2表面電漿之色散關係 15
2.3 設計 17
2.4設計流程圖 20
第三章 實驗 21
3.1實驗架構 21
3.1..1蒸鍍系統 21
3.1.2蒸鍍流程 22
3.2光譜量測 23
3.3稜鏡耦合量測 25
第四章 實驗結果與討論 27
4.1斜向沈積薄膜 27
4.1.1 單層斜向柱狀微觀結構的薄膜 27
4.1.2 沈積角度、柱狀傾角、三主軸折射率的關係 31
4.2. 三層薄膜的製鍍 33
第五章 實驗討論之三層薄膜的組態 43
5.1討論銀膜層的折射率 43
5.2討論表面電漿共振角度 44
5.2.1單層薄膜的表面電漿共振角度之範圍 44
5.2.2雙層薄膜的表面電漿共振角度變化 45
5.2.3三層薄膜的表面電漿共振角度變化 48
5.3討論TE與TM模態對三層薄膜的表面電漿之影響 49
第六章 結論 57
參考文獻 58
論文參考文獻:[1] 李正中,薄膜光學與鍍膜技術,藝軒圖書出版社,第五版,2004, pp.439-498,.
[2] E. Klemberg-Sapieha, J. Oberste-Berghaus, L. Martinu, R. Blacker, Ian Stevenson, G. Sadkhin, D. Morton, S.McEldowney, R. Klinger, P. J. Martin, N. Court, S. Dligatch, M. Gross,and R. P. Netterfield, “Mechanical characteristics of optical coatings prepared by various techniques: a comparative study,” Appl. Opt., Vol. 43, no. 13, 2004 , pp. 2670-2679.
[3] A. P. Bradford, G. Hass, M. McFarland, and E. Ritter, “Effect of Ultraviolet Irradiation on the Optical Properties of Silicon Oxide Films,” Appl. Opt., Vol. 4, 1965 , pp. 971-976.
[4] I. J. Hodgkinson, “The Change in Thickness and Other Optical Properties of Ultraviolet Irradiated Silicon Oxide Films,” Appl. Opt., Vol. 9, 1970 , pp. 1577-1586.
[5] R. Thielsch, A. Gatto, and N. Kaiser, “Mechanical stress and thermal-elastic properties of oxide coatings for use in the deep-ultraviolet spectral region,” Appl. Opt., Vol. 41, 2002 . pp. 3211-3217.
[6] J. E. Klemberg-Sapieha, J. Oberste-Berghaus, L. Martinu, R. Blacker, Ian Stevenson, G. Sadkhin, D. Morton, S. McEldowney, R. Klinger, P. J. Martin, N. Court, S. Dligatch, M. Gross, and R. P. Netterfield, “Mechanical characteristics of optical coatings prepared by various techniques: a
comparative study,”, Appl. Opt., Vol. 43, 2004 , pp. 2670-2679.
[7] Le-Nian He and Jin Xua, “Properties of amorphous SiO2 films prepared by reactive RF magnetron sputtering method,” Vacuum, Vol. 68, 2003 , pp. 197-202.
[8] O. D. Vol’pyan and P. P. Yakovlev, Yu. A. Obod, “Investigation of SiO2 optical films produced by reactive ac magnetron sputtering,” J. Opt. Technol., 71, 2004 , pp. 487-490.
[9] A. Tabata, N. Matsuno, Y. Suzuoki and T. Mizutani, “Optical properties and structure of SiO2 films prepared by ion-beam sputtering,” Thin Solid Films, Vol. 289, 1996 , pp. 84-89.
[10] G. Emiliani and S. Scaglone, “Properties of silicon and aluminum oxide thin films deposited by dual ion beam sputtering,” J. Vacuum Sci. Technol., Vol. 5, 1987 , pp. 1824-1827.
[11] Tuan.H. Pham, Cu. X. Dang “Ion Assisted Deposition of SiO2 film from Silicon,
” Optical Design and Engineering II. Edited by Mazuray, Laurent; Wartmann, Rolf. Proceedings of the SPIE, Vol. 5963 , 2005 , pp. 535-538.
[12] M.S. Haque, H.A. Naseem, W.D. Brown, “Post-deposition processing of low temperature PECVD silicon dioxide films for enhanced stress stability”, Thin Solid Films, Vol. 308–309, 1997 , pp. 68-73.
[13] Jean-Yee Wu, Cheng-Chung Lee, “Comparison of silicon oxide films deposited by RF ion beam sputtering and e-beam gun evaporation in visible and UV ranges,” Proc. SPIE, Vol. 5870, 2005 , pp. 58700G-1 - 58700G-8.
[14] J. Bayless, R. Knechtli, G. Mercer, “ The Plasma-Cathode Electron Gun,” IEEE Journal of Quantum Electronic, Vol. 10, 1974 ,pp. 213-218.

[15] K. Scherer, L. Nouvelot, P. Lacan, and R. Bosmans, “Optical and mechanical characterization of evaporated SiO2 layers. Long-term evolution,” Appl. Opt., Vol. 35, 1996 , pp. 5067-5072
[16] A. P. Bradford, G. Hass, M. McFarland, and E. Ritter, “Effect of Ultraviolet Irradiation on the Optical Properties of Silicon Oxide Films,” Appl. Opt., Vol. 8, 1965 , pp. 971-976.
[17] Michael Gevelber, Bing Xu, and Douglas Smith, “Improved rate control for electron-beam evaporation and evaluation of optical performance improvements,” Appl. Opt., Vol. 45, 2006 , pp. 1456-1460.
[18] B. Dick, M.J. Brett, T.J. Smy, M.R. Freeman, M. Malac, and R.F. Egerton
"Periodic magnetic microstructures by glancing angle deposition,"
J. Vacuum Science and Technology A, Vol. 18, 2000 , pp. 1838-1844.
[19] B. Dick, M. J. Brett, and T. Smy, “Investigation of substrate rotation at glancing angle incidence on thin-film morphology,” J. Vac. Sci. Technol. B, Vol. 21, 2003 pp. 2569-2575.
[20] D. Vick, T. Smy, M. J. Brett ,“Growth behavior of evaporated porous thin films , ” J. mater. res, vol. 17, 2002 , pp. 2904-2911
[21] J.-Q. Xi, Jong Kyu Kim, Schubert EF.,“Silica Nanorod-Array Films with Very Low Refractive Indices,” Nano Lett., Vol. 5 , 2005 , pp. 1385 -1387.
[22] J.-Q. Xi, Jong Kyu Kim, E. F. Schubert, Dexian Ye, T.-M. Lu, Shawn-Yu Lin, and Jasbir S. Juneja “Very low-refractive-index optical thin films consisting of an array of SiO2 nanorods,” Opt. Lett., Vol. 31, 2006 , pp .601-603.
[23] J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nature Photon. , Vol. 1, 2007 , pp. 176-179.
[24] Pelliccione, M.; Lu, T.-M, “Self-shadowing in ballistic fan formation from point seeds,” Phys. Rev. B, Vol. 75, 2007 , pp. 245431.
[25] D. Vick, T. Smy, M. J. Brett , “Growth behavior of evaporated porous thin films,” J. mater. res., Vol. 17, 2002 , pp. 2904-2911.
[26] K. D. Harris, D. Vick, T. Smy et al.. “Column angle variations in porous chevron thin films,” J. Vac. Sci. Technol. A, 2002 , Vol. 20, pp. 2062-2066.
[27] Russell Messier, Vijayakumar C. Venugopal, Paul D. Sunal. “Origin and evolution of sculptured thin films,” . J. Vac. Sci. Technol. A, 2000, Vol. 18, pp. 1538-1545.
[28] I. Hodgkinson, Q. H. Wu, and S. Collett, “Dispersion Equations for Vacuum-Deposited Tilted-Columnar Biaxial Media,” Appl. Opt., Vol. 40, 2001 , pp. 452-457.
[29] M. O. Jensen and M. J. Brett, “Periodically structured glancing angle deposition thin films,” IEEE Trans. Nanotechnol., Vol. 4, 2005 , pp. 269-277.
[30] E.Main, T.Karabacak, and T.-M.Lu, “Continuum model for nanocolumn growth during oblique angle deposition,” J. Appl. Phys., Vol. 95, 2004 , pp. 4346-4351.
[31] M. Suzuki and Y. Taga, “Numerical study of the. effective surface area of obliquely deposited thin films,”, J. Appl. Phys., Vol. 90, 2001 , pp. 5599-5605.
[32] I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, and K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. Vol. 39, 2000 , pp. 642-649.

[33] Zhao, Yiping; Ye, Dexian; Wang, Gwo-Ching; Lu, Toh-Ming, “Designing nanostructures by glancing angle deposition,”Proc. of SPIE, Vol. 5219, 2003 , pp. 59-73.
[34] C. Buzea, K. Kaminska, G. Beydaghyan, T. Brown, C. Elliott, C. Dean, and K. Robbie, “Thickness and density evaluation nanostructured thin films by glancing angle deposition,” J. Vac. Sci. Technol. B, Vol. 23, 2005 , pp. 2545-2552.
[35] I. J. Hodgkinson, QH Wu, M. Arnold, MW McCall, and A. Lakhta- kia, “Chiral mirror and optical resonator designs for circularly polarized light: Suppression of cross-polarized reflectances and transmittances,” Opt Commun., Vol. 210, 2002 , pp .202–211.
[36] M. M. Hawkeye and M. J. Brett “Narrow bandpass optical filters fabricated with one-dimensionally periodic inhomogeneous thin films,” J. Appl. Phys., Vol. 100, 2006 , pp. 044322.
[37] Pursel, Sean M.; Horn, Mark W. “Prospects for nanowire sculptured-thin-film devices,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 25, 2007 , pp. 2611-2615.
[38] H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer-Verlag, Berlin, 1988.
[39] W. P. Chen and J. M. Chen, “Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films,” J. Opt. Soc. Am., Vol. 71, 1981 , pp. 189-191.

[40] Z. Salamon, H.A. Macleod, and G. Tollin, “Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein system. II: Applications to biological systems,” Biochimica et Biophysica Acta, Vol. 1331, 1997 , pp. 131-152.
[41] P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators. B, Vol. 54, 1999 , pp. 43-50.
[42] D. R. Shankaran, K. V. Gobi, N. Miura, “Recent Advancements in Surface Plasmon Resonance Immunosensors for Detection of Small Molecules of Biomedical, Food and Environmental Interest,” Sensors and Actuators B, Vol. 121, 2007 , pp. 158-177.
[43] Otto, A, “Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection,” Z. Phys., Vol. 216, 1968 , pp. 368-410.
[44] E. Kretschmann, “Die Bestimmung Optischer Konstanten von Metallen durch Anregung von Oberflaechenplasmaschwingungen,” Z. Phys., Vol. 241, 1971 , pp. 313–324.
[45] D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett., Vol. 47, 1981 , pp. 1927-1930.
[46] Y. J. Jen and C. L. Chiang, “Optical thickness and anisotropic orientation of a birefringent thin film: analysis from explicit expressions for reflection and transmission coefficients, ” Opt. Eng., Vol. 45, 2006 , 023802.
[47] Yi-Jun Jen and Cheng-Lung Chiang, “Enhanced polarization conversion for an anisotropic thin film,” Opt. Commun., Vol. 265,2006, pp. 446-453.
[48] J. M. Nieuwenhuizen and H. B. Haanstra, “Microfractography of thin films,” Philips Tech. Rev., Vol. 27, 1966 , pp. 87–91.
[49] R. Tait, T. Smy, and M. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films, Vol. 226, 1993 , pp. 196–201.
[50] Woo, S.-H., Hwangbo, C.K. “Optical anisotropy of TiO2 and MgF2 thin films prepared by glancing angle deposition,” Journal of the Korean Physical Society, Vol. 49, 2006 , pp. 2136-2142.
論文全文使用權限:同意授權於2009-08-12起公開