現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:利用等效介質近似理論估算非均向斜柱薄膜折射率 [以論文名稱查詢館藏系統]
論文英文名稱:Refractive Index Estimation of Anisotropic Thin Films Using Effective Medium Approximation [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:電資學院
系所名稱:光電工程系研究所
畢業學年度:97
出版年度:98
中文姓名:黃昱超
英文姓名:Yu-Chao Huang
研究生學號:96658068
學位類別:碩士
語文別:中文
口試日期:2009-06-26
論文頁數:87
指導教授中文名:任貽均
口試委員中文名:藍永強;陳至信
中文關鍵詞:雙折射非均向等效介質近似等效折射率
英文關鍵詞:Birefringentanisotropiceffective medium approximationeffective index
論文中文摘要:由晶體光學理論可知,當材料具有非均向特性時,會於三個座標產生不同的折射率,而本文將使用較簡便的計算方法,找出具有氟化鎂 (MgF2) 單軸晶體的非均向薄膜折射率,並且與量測數據做比較。
本文於第一章後半段與第三章,將藉由回顧Akhlesh Lakhtakia 的期刊文章,來說明等效介質近似理論對於金屬材料的適用性,於第四章,將對銀 (silver) 複合材料的金屬柱做初步的估算,並探討之。
而等效介質近似理論最大的優勢在於,只要得到微結構材料的訊息,即可估算折射率,進而與量測數據做對照,相互驗證。
若材料具介電質特性,藉由材料的已知參數,並利用等效介質近似理論計算,可找出相當精確的介電係數範圍,而我們以二元複合材料出發,其一設為空氣,另一個材料由 MgF2 取代,來估算 MgF2 奈米斜柱的折射率。
藉由此方法,我們可以成功的去估算介電材料 MgF2 的等效相對介電係數範圍,則量測的數據也位於其範圍內。
論文英文摘要:For a columnar structured thin film, there are three principal refractive indices along three principal axes. In this work, the effective medium approximation theory is applied to estimate the principal indices of an anisotropic dielectric film.
Consider the structured parameter (depolarization factor) and volume fraction of a two-component composite material, the regime of effective permittivity can be limited by the bounds that are plotted on the permittivity diagram. Using the effective medium approximation theory, the effective permittivity of dielectric columnar film can be accurately estimated. The refractive index of a metal nano-rod film is also explored using effective medium approximation and the estimation is compared with experimental results.
論文目次:中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 物理氣相沉積法製鍍非均向柱狀薄膜 1
1.1.1鍍膜系統架構 3
1.2 遮蔽效應與奈米柱的產生 5
1.3 奈米斜柱與偏極轉換現象 5
1.4 奈米斜柱的光學現象 7
1.5 等效介質近似理論的概述 8
1.5.1 準靜態近似理論 9
1.6 Akhlesh Lakhtakia 針對 B-M bounds 的文獻探討 10
第二章 宏觀複合材料理論分析 13
2.1 複合材料邊界條件的假設 13
2.2 能量守恆的概念 14
2.3 複合材料的Bergman-Milton bounds理論 18
2.3.1 Bergman-Milton 的電位通解 19
2.3.2 等效介電係數譜的表示型式 32
2.3.3 一些精確微結構的model 44
2.3.4 空間格林函數與電位解析 53
第三章 B-M bounds 之 Akhlesh Lakhtakia 邊界理論分析 62
3.1 Bergman 與 Milton 的 Bergman-Milton 邊界 63
3.2 複合材料與 B - M bounds 的關係 67
3.2.1 無損耗材料的分析 67
3.2.2 損耗性材料的分析 68
3.3 邊界的圖解分析 69
3.4 等效介值近似的金屬應用 73
第四章 折射率範圍計算與實驗參數比較 75
4.1利用電容的串並聯結構計算 75
4.2利用顆粒狀結構計算 78
4.3 等效介質近似的金屬計算 81
第五章 結果與討論 83
參考文獻 85
論文參考文獻:[1] A. Lakhtakia and R. Messier, “Sculptured thin films – I. Concepts,” Mater. Res. Innov., vol.1, pp. 145-148 (1997).
[2] R. Messier and A. Lakhtakia, “Sculptured thin films – II. Experiments and applications,” Mater. Res. Innov. vol.2, pp. 217-222 (1999).
[3] R. Messier, V. C. Venugopal and P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol A vol.18, pp.1538-1545 (2000).
[4] Ming Li, Steve K Dew and M J Brett, “Effects of electron distribution functions on the floating potential of particles in the plasma:thin plasma sheaths,” J. Phys. D:Appl. Phys. vol.32, pp.2056-2059 (1999).
[5] Cheng-Yu Peng and Yi-Jun Jen and Kuen-Teng Shiu, “Influences of the incident angle, orientation of deposition plane and film thickness on a polarization conversion reflection filter,” in Opt. Interference Coatings, June 3-8, pages1-3, TuC5 (2007).
[6] F. Horowitz, “Structure-Induced Optical Anisotropy in thin film,” PhD dissertation, University of Arizona, Optical Science Center (1983).
[7] F. Horowitz and H.A. Macleod, “Determination of principal refractive indices of birefringent films,” Optical Interference Coatings, vol.6, pp.203-206 (1988).
[8] M. Born and E. Wolf, “Principles of Optics,” 7th edition, pp.790-808 (2001).
[9] J. C. M. Garnett, “Colours in metal glasses, in metallic films, and in Metallic Solutions,” Philosophical Transactions of the Royal Society of London, vol. 203, pp. 385-420 (1904).
[10] D. A. G. Bruggeman, “Calculations of various physical constants of heterogeneous substance:part I, dielectric constants and conductivity of isotropic substance,” Ann. Phys, vol. 24, pp. 636-699, (1935).
[11] G.W. Milton, “Bounds on the transport and optical properties of a two- component composite material,” J. Appl. Phys. vol.52, 5286-5293 (1981).
[12] D. J. Bergman, “The dielectric constant of a composite material - A problem in classical physics,” Physics Reports, vol.43, 377-407 (1978).
[13] Andrew J. Duncan, Tom G. Mackay, Akhlesh Lakhtakia, “On the Bergman–Milton bounds for the homogenization of dielectric composite materials,” Optics Communications, vol.271, pp.470-474 (2007).
[14] D. J. Bergman and D. Stroud, “Physical Properties of Macroscopically Inhomogeneous Media,” Solid State Physics, vol.46, pp.147-269 (1992).
[15] Y. M. Wu, L. Gao, and Z. Y. Li, “The influence of particle shape on nonlinear optical proparties of metal-dielectric composites,” Phys. Stat.Sol. (b), vol.220, pp.997-1008, (2000).
[16] Paul Adrie Manrice Dirac, “The Principles of Quantum Mechanics” 4th edition, pp.14-52 (1930).
[17] D. J. Bergman, “The dielectric constant of a simple cubic array of identical spheres,” J. Phys. C, Solid-State Phys., vol. 12, no. 22, pp.4947-4960, (1979).
[18] L. Eyges, “The Classical Electromagnetic Field,” Dover Publications, New York (1972).
[19] George Green, “An Essay on the Mathematical Analysis of Electricity and Magnetism,” Nottingham, pp.1-83 (1828).
[20] Mark I. Stockman, Sergey V. Faleev, and David J. Bergman, “Localization versus Delocalization of Surface Plasmons in Nanosystems: Can One State Have Both Characteristics?,” Phys. Rev. Lett. vol.87, no.16, pp.167401-1-167401-4 (2001).
[21] O. Wiener, “Die Theorie des Mischkörpers für das Feld des stationären Strömung. erste abhandlung die Mittelswertsätze für kraft, polarisation und energie,” Abh. Math. Phys. Kl. Königl. Säch., vol.32, pp.509-604 (1912).
[22] S. Ogura, “Some features of the behavior of optical thin films,” Ph.D. Thesis, Newcastle upon Tyne Polytechnic, England (1975).
[23] Z. Hashin and S. Shtrikman, “A variational approach to the theory of the effective magnetic permeability of multiphase materials,” J. Appl. Phys., vol. 33, pp.3125-3131 (1962).
[24] B. Sareni, L. Krähenbühl, A. Beroual, and C. Brosseau, “Effective dielectric constant of periodic composite materials,” J. Appl. Phys., vol.80, no.3, pp.1688-1696 (1996).
[25] H.A. Maclead, “Thin Film Optical Filter,” 3rd edition, Institute of Physics Publishing (2001).
論文全文使用權限:同意授權於2009-08-06起公開