現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:在Kretschmann組態下利用對稱膜堆增強表面電漿 [以論文名稱查詢館藏系統]
論文英文名稱:Using Symmetric Film Stack to Enhance Surface Plasmon in the Kretschmann Configuration [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:電資學院
系所名稱:光電工程系研究所
畢業學年度:97
出版年度:98
中文姓名:詹子儀
英文姓名:Tzu- Yi Chan
研究生學號:96658044
學位類別:碩士
語文別:中文
口試日期:2009-06-26
論文頁數:59
指導教授中文名:任貽均
口試委員中文名:藍永強;陳至信
中文關鍵詞:表面電漿長程表面電漿Kretschmann組態
英文關鍵詞:surface plasmalong range surface plasmonKretschmann configuration.
論文中文摘要:本研究在Kretschmann組態下激發長程表面電漿,利用高低折射率對稱膜堆使得對稱膜堆等效導納匹配金屬薄膜上下導納,進而激發出長程表面電漿,而在實際製鍍薄金屬膜時,往往因為厚度很薄,薄膜尚未成膜其呈現島狀結構,造成金屬性下降,而利用對稱膜堆導納匹配方法,可以增加長程表面電漿傳播長度。
研究方法以光學導納分析各種等效膜層結構對金屬薄膜內長程表面電漿激發態的影響,同時也藉由反射率角頻譜中的全反射衰減曲線的半寬度,了解傳播長度在不同組態下的變化情形。
論文英文摘要:This study is using the symmetric film stack to excite long range surface plasmon in the Kretschmann configuration and match admittance of metal with admittance of symmetric film stack.
With deceasing thickness of deposited silver film, the micro structure is an island film. Therefore, the refractive index is different from that bulk silver. By using symmetric film stack matching method, the propagation length of long-range surface plasmon can be extended.
Optical admittance method can analyze the effect of the symmetric film stack on propagation length of surface plasmon. The half width of ATR curve is observed from the reflection angular spectrum. Our method offers the way to analyze the dependence of propagation length on different structures.
論文目次:中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 文獻回顧 1
1.2 二氧化矽薄膜 2
1.3 二氧化鈦薄膜 3
1.4 表面電漿簡介 4
1.5 電漿傳播長度 7
1.6 稜鏡激發表面電漿 8
1.6.1 Otto組態 9
1.6.2 Krestchmann組態 10
1.6.3 Sarid組態 10
1.7 增加傳播長度 11
第二章 長程表面電漿理論 12
2.1 Sarid方法 12
2.2等效電漿傳播常數 14
2.3光學導納 17
2.3.1膜矩陣 18
2.3.2斜向導納 20
2.3.3對稱膜堆 21
2.4單層表面電漿導納 23
2.4.1三層結構長程表面電漿導納 25
2.4.2多層膜組態 27
第三章 模擬 30
3.1模擬一 30
3.1.1 BK7/SiO2 /Ag/SiO2/Air configuration 30
3.1.2 BK7/Air/Ag/Air configuration 32
3.1.3 Prism/symmetric film stack/Ag/Air configuration 34
3.2模擬二 37
3.2.1 BK7/SiO2/Ag/symmetric film stack/Air configuration 37
第四章 實驗 41
4.1 穿透式光譜儀量測 41
4.2 反射率角頻譜量測 42
4.3 蒸鍍系統 42
4.4 實驗結果 43
第五章 結論 56
參考文獻 57
論文參考文獻:[1] H. J. Simon, D. E. Mitchell, and J. G. Watson, “Surface plasmon in silver films-a novel undergraduate experiment,” Am. J. Phys., Vol. 43, pp. 630-636. (1975).
[2] W. P. Chen, J. M. Chen, “Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films,” J. Opt. Soc. Am., Vol. 71, pp. 189-191. (1981).
[3] Fuzi Yang, J. R. Sambles, and G.W. Bradberry, “Determination of the optical constants and thickness of a highly absorbing film using the attenuated total reflection technique,” J. Mod. Optics, Vol. 38, pp. 1441-1450. (1991).
[4] D. Sarid, R. T. Deck, and A. E. Craig et al., “Optical field enhancement by long range surface plasma waves,” Appl. Opt., Vol. 21, pp. 3993-3995. (1982).
[5] T. Kume, T. Kitagawa, and S. Hayashi, et al., “Long range surface modes supported by SiO2 Ag composite thin films,” Surf. Sci., Vol. 395, pp. 23-29. (1998).
[6] Z.C. Wu, E.T. Arakawa, and T. Inagaki, et al., “Experimental observations of a long-range surface mode in metal island films,” Phys. Rev. B, Vol. 49, pp. 7782-7785. (1994).
[7] T. Inagaki, J. P. Goudonnet, and P. Royer, et al., “Optical properties of silver island films in the attenuated-total-reflection geometry,” Appl. Opt., Vol. 25, pp. 3635-3639. (1986).
[8] Fuzi Yang, G.W. Bradberry, and J.R. Sambles, “Long-range surface mode supported by very thin silver films,” Phys. Rev. Lett., Vol. 66, pp. 2030-3032. (1991).
[9] J. Dostalek, R.F. Roskamp, and W. Knoll, “Coupled long range surface plasmons for the investigation of thin films and thin films and interfaces,” Sens. Actuators B: Chem., Vol. 139, pp.9-12. (2008).
[10] G.I. Stegeman, R.F. Wallis, and A.A. Maradudin, “Excitation of surface polaritons by end-fire coupling,” Opt. Lett., Vol. 8, pp. 386-388. (1983).
[11] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, Vol. 424, pp. 824-830. (2003).
[12] A. Degiron, P. Berini, and D.R. Smith, “Guiding light Long-range surface plasmons,” Opt. Photon. News, Vol. 19, pp. 29-34. (2008).
[13] 李正中,薄膜光學與鍍膜技術,藝軒圖書出版社,第五版,2004
[14] H. Selhofer, E. Ritter, and R. Linsbod, “Properties of titanium dioxide films prepared by reactive electron-beam evaporation from various starting materials,” Appl. Opt., Vol. 41, pp. 756-762. (2002).
[15] H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,”
Springer-Verlag, Berlin, (1988).
[16] M. Takabayashi, M. Haraguchi, and M. Fukui, “Propagation length of guided waves in lossy Si film sandwiched by identical dielectrics,” J. Opt. Soc. Am. B, Vol. 12, pp. 2406-2411. (1995).
[17] Otto, A, “Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection,” Z. Phys., Vol. 216, 1968, pp. 368-410.
[18] E. Kretschmann, “Die Bestimmung Optischer Konstanten von Metallen durch
Anregung von Oberflaechenplasmaschwingungen,” Z. Phys., Vol. 241, pp. 313-324. (1971).
[19] D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett., Vol. 47, pp. 1927-1930. (1981).
[20] F. Y. Kou, T. Tamir, “Range extension of surface plasmons by dielectric layers,” Opt. Lett., Vol. 12, pp.367-369. (1987).
[21] L. Wendler, R. Haupt, “Long-range surface plasmon-polaritons in asymmetric layer structures,” J. Appl. Phys., pp. 3289-3291. Vol. 59, (1986).
[22] J. Guo, R. Adato, “Extended long range plasmon waves in finite thickness metal film and layered dielectric materials,” Opt. Exp., Vol. 25, pp. 142409-12418. (1987).
[23] Fuzi Yang, G.W. Bradberry, and J.R. Sambles, “Long-range surface mode supported by very thin films,” Phys. Rev. B., Vol. 44, pp. 5855-5872. (1991).
[24] H. A. Macleod, “Thin-Film Optical Filters,” Adam Hilger Ltd, Bristol, 2nd edition, 1986.
[25] L.I. Epstein, “Design of optical filters,” J. Opt. Soc. Am., Vol. 42, pp. 806-810. (1952).
論文全文使用權限:同意授權於2009-08-06起公開