現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:利用週期性奈米結構激發橫向電波之表面電漿振盪 [以論文名稱查詢館藏系統]
論文英文名稱:Using Periodic Nanostructures to Excite TE Mode Surface Plasmon [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:電資學院
系所名稱:光電工程系研究所
畢業學年度:97
出版年度:98
中文姓名:李彥蒲
英文姓名:Yan-Pu Li
研究生學號:96658034
學位類別:碩士
語文別:中文
口試日期:2009-06-26
論文頁數:69
指導教授中文名:任貽均
口試委員中文名:陳至信;藍永強
中文關鍵詞:等效導納表面電漿週期性奈米結構
英文關鍵詞:effective admittancesurface plasmonperiodic nanostructure
論文中文摘要:等效導納軌跡在膜層分析與設計當中是一種相當方便且精確的理論,在Kretschman組態下介質/銀/空氣之架構為激發縱向電波表面電漿振盪基本的例子,而在激發表面電漿振盪的入射角之金屬層等效導納軌跡由正虛軸往正實軸附近繞,因此在本論文中,由斜向S型奈米結構或者高低折射率材料堆疊出之週期性奈米結構,模擬製鍍在金屬性良好的均向金屬薄膜上,在Kretschman組態下,且由固定波長之TE電磁波入射,可產生與TM波表面電漿振盪類似的等效導納軌跡,分析膜層中之電場分布情形藉以確認為TE波表面電漿振盪。
在實驗上,利用電子槍的製程方式,以二氧化矽(SiO2)為斜向S型奈米結構之材料,製鍍在均向鋁(Al)薄膜,另外以二氧化鈦(TiO2)為高折射率材料,二氧化矽為低折射率材料,均向銀(Ag)薄膜下製鍍週期性奈米結構,製鍍出稜鏡/銀/斜向S型奈米結構/空氣以及稜鏡/銀/均向週期介質對稱膜堆/空氣的組態,在He-Ne雷射(波長為632.8奈米)入射電磁波下,觀察在不同週期薄膜的TE波入射角頻譜,並利用電場分析,判斷其吸收波峰為表面電漿振盪或者波導,以確認表面電漿振盪激發的位置。
論文英文摘要:The effective admittance is a convenient and exact theory to analyze or design thin films. For instance, the system medium/Ag/air in Kretschman configuration is a simple example which excites TM-mode surface plasmon resonance (SPR). At the resonance angle, the admittance locus of the metal layer starts at the positive imaginary axis and ends nearby the positive real index of incident medium. In this study, an s-shape nanostructure or a multilayer of symmetric film stack underneath the metal film in Kretschmann configuration has the similar effect index in TE-mode as the TM-mode SPR. The TE-mode SPR is demonstrated by analyzing the electric field distribution at the absorptance peaks in the angular apectrum.
In experiment, all materials are evaporated on the BK7 substrate by electron-beam system. SiO2 material is used to fabricate a 3-period anisotropic s-shape film in BK7/Al/s-shape nanostructure/air system. Besides, TiO2 and SiO2 materials are used as evaporation sources to fabricate 1 to 4-period multilayer of symmetric film stack in BK7/Ag/periodic nanostructures/air systems. The absorptance angular spectrum is measured and calculated in attenuated total reflection (ATR) system with He-Ne laser (632.8nm). When absorptance peak happens, the analysis for electric field distribution at the absorptance peaks is used to demonstrate the SPR.
論文目次:目錄

中文摘要………………………………………………………….………………..…..i
英文摘要………………………………………………………….……………….…..ii
誌謝……………………………………………………………….………..………....iv
目錄……………………………………………………………….……………….......v
表目錄…………………………………………………………………………….…viii
圖目錄……………………………………………………………………………..….ix

第一章 緒論………………………………………………………. …………………1
1.1 前言………………………………………….………………………………1
1.2 薄膜材料…………………….………………………………………………1
1.2.1 二氧化矽薄膜……..…………………………………………………1
1.2.2 二氧化鈦薄膜………………………………………..………………2
1.2.3 金屬薄膜……………………………………………………………..2
1.3 斜向沉積技術………………………….……………………………………3
1.4 表面電漿振盪…………………………………………….…………………4
1.5 動機……………………………………….…………………………………7
第二章 理論………………………………..…………………………………………9
2.1 膜矩陣…………….…………………………………………………………9
2.2 導納軌跡……………………………………...……………………………11
2.2.1 等反射率與等相位曲線……………………………………………11
2.2.2 單層膜與多層膜之等效導納………………………………………13
2.2.3 金屬膜之導納軌跡…………………………………………………15
2.2.4 對稱膜堆……………………………………………………………17
2.2.5 斜向入射時光學常數之修正………………………………………18
2.3 雕刻薄膜理論……………………………………………………………...19
2.3.1 結構膜矩陣…………………………………………………………19
2.3.2 邊界值問題…………………………………………………………22
2.4 設計…………………………………...……………………………………23
第三章 實驗架構與校正……………………………………………………………28
3.1 量測系統……………………………………………………………...……28
3.2 儀器校正…………………………………………………………...………30
3.2.1 穿透式光譜儀校正程序……………………………………………30
3.2.2 單波長反射式角頻譜系統校正程序………………………………31
3.3 製鍍系統……………………………………………………………...……33
3.4 實驗流程………………………………………………………………...…34
第四章 實驗量測與結果……………………………………………………………35
4.1 斜向S型奈米結構…………………………………………………………35
4.1.1 二氧化矽斜柱………………………………………………………35
4.1.2 均向鋁薄膜…………………………………………………………39
4.1.3 合成膜………………………………………………………………39
4.2 週期性對稱膜堆………………………………………………...…………40
4.2.1 均向介質薄膜………………………………………………………40
4.2.2 均向銀薄膜…………………………………………………………41
4.2.3 合成膜………………………………………………………………42
第五章 模擬與分析…………………………………………………………………44
5.1 斜向S型奈米結構………………………………………………………..44
5.1.1 斜向S型奈米結構模擬參數與TE波電場分布…………………44
5.1.2 改變週期數之吸收角頻譜變化…………………………………..46
5.1.3 折射率變化之吸收角頻譜………………………………………..49
5.2 週期性對稱膜堆………………………………………………………….54
5.2.1 週期性對稱膜堆模擬參數與TE波電場分布……………………54
5.2.2 週期數增加之TE波表面電漿振盪………………………………61
5.2.3折射率變化之吸收角頻譜………………………………………...62
第六章 結論…………………………………………………………………………65
參考文獻……………………………………………………………………………..66
論文參考文獻:參考文獻

[1] H.A. Macleod, “Thin Film Optical Filters,” 2nd edition (1986).
[2] R. Thielsch, A. Gatto, and N. Kaiser, “Mechanical stress and thermal-elastic properties of oxide coatings for use in the deep-ultraviolet spectral region,” Applied Optics 41 (16), pp. 3211-3217 (2002).
[3] J.E. Klemberg-Sapieha, J. Oberste-Berghaus, L. Martinu, R. Blacker, Ian Stevenson, G. Sadkhin, D. Morton, S. McEldowney, R. Klinger, P.J. Martin, N. Court, S. Dligatch, M. Gross, and R.P. Netterffield, “Mechanical characteristics of optical coatings prepared by various techniques: A comparative study,” Applied Optics 43 (13), pp. 2670-2679 (2004).
[4] R.A. Mickelsen, “Effects of ultraviolet irradiation on the properties of evaporated silicon oxide films,” Journal of Applied Physics 39 (10), pp. 4594-4600 (1968).
[5] I.J. Hodgkinson, “The change in thickness and other optical properties of ultraviolet irradiated silicon oxide films,” Applied Optics 9 (7), pp. 1577-1586 (1970).
[6] A. Tabata, N. Matsuno, Y. Suzuoki, and T. Mizutani, “Optical properties and
structure of SiO2 films prepared by ion-beam sputtering,” Thin Solid Films 289 (1-2), pp. 84-89 (1996).
[7] G. Emiliani and S. Scaglone, “Properties of silicon and aluminum oxide thin films deposited by dual Ion-beam sputtering,” Journal of Vacuum Science Technology A 5 (4), pp. 1824-1827 (1987).
[8] D. Vick, T. Smy, and M.J. Brett, “Growth behavior of evaporated porous thin films,” Journal of Materials Research 17 (11), pp. 2904-2911 (2002).
[9] R. Messiel, V.C. Venugopal, and P.D. Sunal, “Origin and evolution of sculptured thin film,” Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films 18 (4 II), pp. 1538-1545 (2000).
[10] K. Robbie, T. Smy, and M.J. Brett, “Fabrication of thin films with highly porous microstructures,” Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films 13 (3), pp. 1032-1035 (1995).
[11] I.J. Hodgkinson, Q.H. Wu, B. Knight, A. Lakhtakia, and K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Applied Optics 39 (4), pp. 642-649 (2000).
[12] M. Suzuki and Y. Taga, “Numerical study of the effective surface area of obliquely deposited thin films,” Journal of Applied Physics 90 (11), pp. 5599-5605 (2001).
[13] K.D. Harris, D. Vick, T. Smy, and M.J. Brett, “Column angle variations in porous chevron thin films,” Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films 20 (6), pp. 2062-2067 (2002).
[14] F. Horowitz, “Structure-Induced Optical Anisotropy in thin film,” PhD dissertation, University of Arizona, Optical Science Center (1983).
[15] I.J. Hodgkinson, F. Horowitz, H.A. Macleod, M. Sikkens, and J.J. Wharton, “Measurement of the principal refractive indices of thin films deposited at oblique incidence,” Journal of the Optical Society of America A 2, pp. 1693-1697 (1985).
[16] H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,” Springer-Verlag, Berlin (1988).
[17] A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Zeitschrift für Physik 216 (4), pp. 398-410 (1968).
[18] E. Kretschmann, “ The determination of the optical constants of metals by excitation of surface plasmons,” Zeitschrift für Physik 241 (4), pp. 313-324 (1971).
[19] D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Physical Review Letters 47 (26), pp. 1927-1930 (1981).
[20] W.P. Chen and J.M. Chen, “Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films,” Journal of the Optical Society of America 71 (2), pp. 189-191 (1981).
[21] Z. Salamon, H.A. Macleod, and G. Tollin, “Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein system II:Applications to biological system,” Biochimica et Biophysica Acta -Reviews on Biomembranes 1331 (2), pp. 131-152 (1997).
[22] J.A. Polo Jr. and A. Lakhtakia, “Morphological effects on surface-plasmon- polariton waves at the planar interface of a metal and a columnar thin film,” Optics Communications 281 (21), pp. 5453-5457 (2008).
[23] A. Lakhtakia, “Surface-plasmon wave at the planar interface of a metal film and a structurally chiral medium,” Optics Communications 279 (2), pp. 291-297 (2007).
[24] M.A. Motyka and A. Lakhtakia, “Excitation of surface plasmon polaritons at the interface of a metal and a sculptured nematic thin film,” Proceedings of SPIE - The International Society for Optical Engineering 7041, art. no. 70410F (2008).
[25] A. Lakhtakia and R. Messier, “Sculptured thin films:Nanoengineered Morphology and Optics,” SPIE Press, pp. 123-171 (2005).
[26] A. Yariv and P. Yeh, “Optical Waves in Crystals: Propagation and Control of Laser Radiation,” Wiley series in pure and Applied Optics, ISSN 0277-2493, pp.69-120 (1984).
[27] I.J. Hodgkinson, Q.H. Wu, and J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Applied Optics 37 (13), pp. 2653-2659 (1998).
[28] Y.-J. Jen and C.-L. Chiang, “ Enhanced polarization conversion for an anisotropic thin film,” Optics Communications 265 (2), pp. 446-453 (2006).
[29] I.J. Hodgkinson and Q.H. Wu, “Birefringent thin films and polarizing elements”, World Scientific, USA., pp. 12-76 (1997).
論文全文使用權限:同意授權於2009-07-28起公開