現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:銀奈米鋸齒薄膜之微觀結構研製與光學特性量測 [以論文名稱查詢館藏系統]
論文英文名稱:Nanosculptured Chevronic Silver Films: Fabrication and Measurement [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:電資學院
系所名稱:光電工程系研究所
畢業學年度:98
出版年度:99
中文姓名:王榆雄
英文姓名:Yu-Hsiung Wang
研究生學號:97658037
學位類別:碩士
語文別:中文
口試日期:2010-07-22
論文頁數:48
指導教授中文名:任貽均
指導教授英文名:Yi-Jun Jen
口試委員中文名:陳學禮;田春林;劉旻忠;陳昇暉
口試委員英文名:Hsuen-Li Chen;Chuen-Lin Tien;Ming-Chung Liu;Sheng-Hui Chen
中文關鍵詞:銀奈米鋸齒薄膜負折射率負導磁係數
英文關鍵詞:Chevronic silver nanostructured filmnegative equivalent permeabilitynegative equivalent refractive index
論文中文摘要:本篇論文利用斜向(glancing angle deposition)及交錯沉積(bideposition)技術,製鍍鋸齒型銀奈米結構之陣列薄膜,在製鍍的過程中,在固定的沉積角86°及垂直薄膜厚度230±10 nm下,以基板法線為軸旋轉基板方位角180°一次,藉由在不同的鍍膜時間點自轉基板來製鍍不同對稱性的鋸齒型奈米微觀結構;此外,藉由改變薄膜垂直沉積厚度與沉積角度,來製鍍較小尺寸的對稱型銀奈米鋸齒薄膜。
在光學量測上,利用偏極(polarization interferometer)與分離式干涉儀(walk-off interferometer)量測金屬薄膜在波長639 nm下s偏振光及p偏振光的等效透射及反射係數,搭配掃描式電子顯微鏡下觀測到的銀奈米鋸齒薄膜垂直厚度,而得到銀鋸齒型金屬薄膜的四個等效光學常數:折射率、相對本質阻抗、相對介電係數與相對導磁係數,成功在可見光波長639 nm量測到銀奈米鋸齒薄膜具有負的等效折射率,並於文中探討不同微觀結構與不同尺寸銀奈米鋸齒薄膜相對於光學參數之關係。另外,利用有限時域差分法(finite-difference time-domain)套裝軟體定性模擬磁場在銀鋸齒型結構中的共振行為。
論文英文摘要:In this work, we deposited Chevronic silver films with various shapes and sizes by glancing angle deposition and bideposition technology. In the deposition process, the substrate rotates 180 degree about the substrate’s normal at a time during the deposition process.
In the measurement, Chevronic films of silver are considered as a single homogenous layer. The equivalent transmission and reflection coefficients are measured by polarization and walk-off interferometers at the wavelength of 639 nm and the film thickness can be obtained by scanning electron microscope images. The equivalent electromagnetic parameters can be computed by these three factors.
Finally, we use the finite-difference time-domain (FDTD) method to simulate the magnetic field in the Chevronic structure, the near-field simulations show qualitative relations between the magnetic response and the shape of the film.
論文目次:中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論與文獻回顧 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 不同偏振光在金屬斜柱陣列薄膜的透射率差異性 2
1.2.2 金屬奈米柱陣列隨入射角度的透射率差異性 3
1.2.3 斜向金屬奈米柱的吸收特性 3
1.2.4 左手介質與負折射率材料 4
1.2.5 開口環型共振器 8
第二章 原理與介紹 12
2.1 等效折射率與相對本質阻抗 12
2.2 等效相關介電係數與導磁係數 13
2.3 透射係數與反射係數 14
第三章 實驗與量測 16
3.1 蒸鍍系統 16
3.2 製鍍流程 17
3.3 鋸齒型金屬薄膜的製鍍 18
3.4 偏極與分離式干涉儀 19
3.4.1 偏極干涉儀 19
3.4.2 分離式干涉儀 20
3.5 量測 21
3.5.1 透射光譜量測 21
3.5.2 透射光絕對相位量測 22
3.5.3 透射式s與p偏振光正向入射薄膜之等效相位差 22
3.5.4 反射光絕對相位量測 23
3.5.5 反射式s與p偏振光正向入射薄膜之等效相位差 23
第四章 結果與討論 24
4.1 銀奈米鋸齒薄膜之微觀結構製鍍結果 24
4.2 銀奈米鋸齒薄膜之透射率光譜 30
4.3 銀奈米鋸齒薄膜之透射光絕對相位差 32
4.3.1量測相位差時須排除的誤差來源 32
4.3.2透射光絕對相位差量測 33
4.4 透射式s與p偏振光正向入射於金屬薄膜之等效相 34
4.5 銀奈米鋸齒薄膜之反射光絕對相位差量測 35
4.6 反射式s與p偏振光正向入射於金屬薄膜之等效相 36
4.7 銀奈米鋸齒薄膜之透射係數與反射係數 36
4.8 銀奈米鋸齒薄膜之等效折射率與相對本質阻抗 37
4.9 銀奈米鋸齒薄膜之等效相關介電係數與導磁係數 38
4.10 不同微觀結構銀奈米鋸齒薄膜之等效光學參數與 39
4.11不同尺寸對稱性銀奈米鋸齒薄膜之光學參數與磁 42
第五章 結論 46
參考文獻 47
論文參考文獻:[1] V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of μ and ε,” Sov. Phys. Usp., vol. 10, 1968, pp. 509-514.
[2] J. B. Pendry, A. J. Holden, W. J. Stewart and I. Youngs, “Extremely low fequency plasmons in metallica mesostructures ,” Phys. Rev. Lett., vol. 76, 1996, pp. 4773-4776.
[3] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena ,” IEEE Trans. Microwave Theory Tech., vol. 47, 1999, pp. 2075-2084.
[4] D. R. Smith, S. Schultz, P. Markoš and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B., vol. 65, 2002, pp. 195104.1-195104.5.
[5] K. Robbie, J. C. Sit and M. J. Bret, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B., vol. 16, 1998 , pp. 1115-122.
[6] Y.-J. Jen, A. Lakhtakia, C.-W. Yu, and C.-T. Lin, “Vapor-deposited thin films with negative real refractive index in the visible regime ,” Opt. Express., vol. 17, 2009 , pp. 7784-7789.
[7] Y.-J. Jen, A. Lakhtakia, C.-W. Yu, and Y.-H. Wang, “Negative real parts of the equivalent permittivity, permeability, and refractive index of sculptured-nanorod arrays of silver,” J. Vac. Sci. Technol. A., 2010. (to be published)
[8] A. V. Kildishev, W. Cai, U. K. Chettiar, Hsiao-Kuan Yuan, A. K. Sarychev, V. P. Drachev, and V. M. Shalaev, “Negative refractive index in optics of metal–dielectric composites,” J. Opt. Soc. Am. B., vol. 23, 2006, pp. 423-433.
[9] Y. Takeda, N. Takeuchi, T. Fukano, and T. Motohiro, “Obliquely deposited metal films for polarizers,” Appl. Surf. Sci., vol. 244, 2005, pp. 209-212.
[10] G. W. Mbise, G. A. Niklasson, and C. G. Granqvist, "Angular-selective optical transmittance through obliquely evaporated Cr films: Experiments nad theory", J. Appl. Phys., vol. 80, 1966, pp. 5361-5364.
[11] Y. P. Zhao, S. B. Chaney, and Z. Y. Zhang, “Absorbance spectra of aligned Ag nanorod arrays prepared by oblique angle deposition,” J. Appl. Phys., vol. 100, 2006, pp. 063527-063527.
[12] J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett., vol. 85, 2000, pp. 3966-3969.
[13] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett., vol. 84, 2000, pp. 4184-4187.
[14] J. Huangfu, L. Ran, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyka, and J. A. Kong, “Experimental confirmation of negative refractive index of a metamaterial composed of Ω-like metallic patterns,” Appl. Phys. Lett., vol. 84, 2004, pp. 1537-1539.
[15] H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. Grzegorczyk, and J. Kong, “Left-handed materials composed of only S-shaped resonators,” Phys. Rev. E., vol. 70, 2004, pp. 057605.1-057605.4 .
[16] R. Marque’s, F. Mesa, J. Martel and F. Medina, “Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design—theory and experiments,” IEEE Trans. Antennas Propag., vol. 51, no. 10, 2003, pp. 2572–2581.
[17] S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science, vol. 306, 2004, pp. 1351–1353.
[18] S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared Resonant Magnetic Nanostructures Exhibiting a Negative Permeability,” Phys. Rev. Lett., vol. 94, 2005, pp. 037402.1-037402.4.
[19] R. A. Depine and A. Lakhtakia, “A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity,” Microwave Opt. Technol. Lett., vol. 41, 2004, pp. 315-317.
[20] 李正中,光學薄膜與鍍膜技術,台北:藝軒圖書出版社,2006,第292頁。
[21] A. Taflove and S. C. Hagness,” Computational Electrodynamics: The Finite-Difference Time-Domain Method,” Boston: Artech House , 2005.
論文全文使用權限:同意授權於2012-08-24起公開