現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:利用不對稱交錯沉積技術製鍍非均向性二氧化鈦薄膜 [以論文名稱查詢館藏系統]
論文英文名稱:Fabrication of TiO2 anisotropic thin film with asymmetric bideposition technique [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:電資學院
系所名稱:光電工程系研究所
畢業學年度:98
出版年度:99
中文姓名:余泰宏
英文姓名:Tai-Hung Yu
研究生學號:97658043
學位類別:碩士
語文別:中文
口試日期:2010-07-22
論文頁數:50
指導教授中文名:任貽均
指導教授英文名:Yi-Jun Jen
口試委員中文名:田春林;陳學禮;陳昇輝;劉旻忠
口試委員英文名:Chuen-Lin Tien;H. L. Chen;Sheng-Hui Chen;M.C.Liu
中文關鍵詞:交錯沉積偏極轉換非均向光學薄膜
英文關鍵詞:bidepositionpolarization conversionanisotropic thin film
論文中文摘要:本文利用交錯沉積技術製鍍非均向光學薄膜,藉由不對稱的沉積角度與週期厚度來調制薄膜的柱狀傾角,其光學上能增強雙折射特性而拓寬偏極轉換效率強度達80%以上的角頻譜。
在實驗方面,以電子槍蒸鍍系統製鍍各種不對稱組合的沉積角之二氧化鈦非均向光學薄膜並以偏極轉換法量測其角頻譜以得到薄膜之三主軸折射率,發現在同週期厚度下,不對稱角度的落差由大至小,使得柱狀傾角由大至小,雙折特性由大至小。另一方面,在同角度落差下,不同週期厚度由小至大,其雙折射特性由大至小。利用此折射率資料庫,未來能做為廣角度偏極轉換光學元件之設計應用。
論文英文摘要:In this study, we fabricated anisotropic thin film of titanium dioxide by bideposition technique. In order to control the column angle, we used the asymmetric deposition angle and the pitch of thicknesses. In optical properties, it can enhance the birefringence and broaden angular spectrum of over 80% polarization conversion.
In the experiment, we used electron beam evaporation to fabricate anisotropic thin film of titanium dioxide which is combined with different type of deposition angles and the major indices are measured by polarization conversion. We found that asymmetric deposition angle changed from large to small at the same pitch of thicknesses, it caused the column angle changed from large to small and the property of birefringence enhanced from large to small. On the other hand, the different pitch of thicknesses changed from small to large and the property of birefringence enhanced from small to large at the same asymmetric deposition angle. Using this database, it will be designed and applied for the optical element on the wide angle polarization conversion in the future.
論文目次:中文摘要...................................................i
英文摘要..................................................ii
誌謝.....................................................iii
目錄......................................................iv
表目錄....................................................vi
圖目錄...................................................vii
第一章 緒論與文獻回顧......................................1
1.1 非均向薄膜.............................................1
1.2 物理氣相沉積法製鍍非均向光學薄膜.......................2
1.3 二氧化鈦薄膜...........................................4
1.4 非均向光學薄膜簡介.....................................4
第二章 原理介紹............................................6
2.1 空間軸與主軸...........................................6
2.2空間軸與主軸的轉換關係..................................7
2.3 Fresnel’s方程式.......................................8
2.4 薄膜矩陣法............................................10
2.5 斜向沉積技術..........................................13
2.6 交錯沉積技術..........................................14
2.7 偏極轉換量測法........................................15
第三章 實驗與量測系統.....................................17
3.1 蒸鍍系統..............................................17
3.2 蒸鍍流程與事先準備....................................18
3.3 單波長反射角頻譜......................................20
3.4 光譜量測..............................................22
3.5 不對稱交錯沉積........................................23
第四章 實驗結果與討論.....................................24
4.1 結構描述與光學特性....................................24
4.1.1 實驗系統的選擇......................................24
4.1.2 柱狀傾角的調制:改變不同沉積角α的搭配..............26
4.1.3 柱狀傾角的調制:改變不同週期厚度的搭配..............29
4.1.4 不對稱交錯沉積的光學特性............................31
4.2 偏極轉換..............................................39
4.3 分析與討論............................................43
4.3.1相同沉積角度與不同的週期厚度.........................43
4.3.2不同的沉積角度與相同週期厚度.........................44
4.3.3偏極轉換與光譜儀的折射率比對.........................44
第五章 結論...............................................47
參考文獻..................................................48
論文參考文獻:參考文獻

[1]N. O. Young and J. Kowal,”Optically active fluorite
films,” Nature, vol. 183, pp.104-105, 1959.
[2]T. Motohiro and Y. Taga, “Thin film retardation plate
by oblique deposition,” Applied optics, vol 28, pp.
2466-2482, 1989.
[3]R. M. A. Azzam, “Chiral thin solid films: Method of
deposition and applications,” Appl. Phys. Lett., vol.
61, pp. 3118-3120, 1992.
[4]I. Hodgkinson, Q. H. Wu, and A. McPhun, “Incremental-
growth model for the deposition of spatially modulated
thin film nanostructures,” J. Vac Sci Technol. B, vol.
16, pp. 2811-2816, 1998.
[5]K. Robbie, M. J. Brett and A. Lakhtakia, “First thin
film realization of a helicoidal bianisotropic medium,”
J. Vac. Sci Technol. A, vol. 13, pp. 2991-2993, 1995.
[6]I. J. Hodgkinsom, Q. H. Wu, J. Hazel, “Empirical
equations for the principal refractive indices and
column angle of obliquely depositied films of tantalum
oxide, titanium oxide, and zirconium oxide,” Applied
Optics, vol. 37, pp. 2653-2659, 1998
[7]F. Horowitz and H. A. Macleod, “Determination of
principal refractive indices of birefringent films,”
Optical Interference Coatings, vol. 6 of 1988 OSA
Technical Digest Series~Optical Society of America,
Washington, D.C., pp. 203-206, 1988.
[8]M. C. Simon, and L. I. Perez, “Reflection and
transmission coefficients in uniaxial crystals,”
Journal of Modern Optics, vol. 38, pp. 503-518,1991.
[9]I. J. Hodgkinson and Q. H Wu, “Birefringent Thin Films
and Polarizing Elements,” Singapore : World Scientific,
1997.
[10]A. Lakhtakia and I. J. Hodgkinson, “Spectral response
of dielecteic thin film helicoidal bianisotropic medium
bilayer,” Optics Commun., vol. 167, pp. 191-202, 1999.
[11]I. J. Hodgkinson, “Optical anisotropy in thin films
depositied obliquely: in situ observations and computer
modeling,” Applied Optics vol. 30, pp. 1303-1312, 1991.
[12]H. Wang, “Determination of optical constants of
absorbing crystalline thin films from reflectance and
transmittance measurement with oblique incident,” J.
Opt. Soc. Am. A, vol. 11, pp. 2331-2337, 1994.
[13]I. Hodgkinson and A. Lakhtakia, “On the Motohiro-Taga
interface for biaxial columnar media,” Optical
Engineering, vol. 37, pp. 3268-3271,1998.
[14]G. Y. Slepyan and A. S. Maksimenko, “Motohiro-Taga
interface in sculptured thin films absence of Bragg
phenomna,” Opticl Engineering, vol. 37, pp. 2843-2847,
1998
[15]J. C. Sit, D. J. Broer, and M. J. Brett, “Optical
devices fabricated from porous thin films embedded with
liquid crystals,” IEEE Electron Devices Meeting, pp.
123-126, 1999.
[16]Q. H. Wu, I. J. Hodgkinson and A. Lakhtakia, “Circular
polarization filters made of chiral sculptured thin
films: experimental and simulation results,” Optical
Engineering, vol 39, pp. 1863-1868, 2000.
[17]Ian J. Hodgkinson and Qi Hong Wu and Ben Knight and
Akhlesh Lakhtakia and Kevin Robbie, ”Vacuum deposition
of chiral sculptured thin films with high optical
activity,” Applied Optics vol. 39, No. 4, 2000.
[18]Lakhtakia and R. Messier,”Sculptured thin films – I.
Concepts,” Mater. Res. Innov., vol., 1997, pp. 145-148.
[19]Messier and A. Lakhtakia,” Sculptured thin films –
II. Experiments and applications,” Mater. Res. Innov.
Vol.2, 1999, pp. 217-222.
[20]R. Messier, V. C. Venugopal and P. D. Sunal, “Origin
and evolution of sculptured thin films,” J. Vac. Sci.
Technol A vol. 18, 2000, pp. 1538-1545.
[21]Ming Li, Steve K Dew and M J Brett, ” Effects of
electron distribution functions on the floating
potential of particles in the plasma: thin plasma
sheaths”, J. Phys. D: Appl. Phys. 32 2056–2059
(1999).
[22]H. Selhofer, E. Ritter, and R. Linsbod, “Properties of
titanium dioxide films prepared by reactive electron-
beam evaporation from various starting materials,”
Appl. Opt., Vol. 41, pp. 756-762. (2002.
[23]T.. Smy, D. Vick, M. J. Brett, S. K. Dew, A. T. Wu and
J. C. Sit, “Three-dimensional simulation of film
microstructure produced by lancing angle deposition,”
J. Vac. Sci. Technol. A, vol. 18, pp. 2507-2512,2000.
論文全文使用權限:同意授權於2012-08-24起公開