現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:銀奈米結構之負折射率與負折射現象以及在長程表面電漿激發之應用 [以論文名稱查詢館藏系統]
論文英文名稱:Negative Refractive Index, Negative Refraction and Long-Range Surface-Plasmon-Polariton Wave in Nano-Scale Silver Films [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:電資學院
系所名稱:光電工程系研究所
畢業學年度:98
出版年度:99
中文姓名:游竟維
英文姓名:Ching-Wei Yu 游竟維
研究生學號:96659003
學位類別:博士
語文別:中文
口試日期:2010-07-16
論文頁數:89
指導教授中文名:任貽均
指導教授英文名:Yi-Jun Jen
口試委員中文名:趙煦;李正中;嚴大任;藍永強;蔡定平;凌國基
口試委員英文名:Shiuh Chao;Cheng-Chung Lee;Ta-Jen Yen;Yung-Chiang Lan;Din Ping Tsai;Kow-Je Ling
中文關鍵詞:銀奈米結構負折射率負折射長程表面電漿波
英文關鍵詞:Negative refractive indexNegative refractionLong-range surface-plasmon-polariton wavesNano-scale silver films
論文中文摘要:本論文主要研究在銀奈米尺度結構下的長程表面電漿波與負折射率、負折射現象。在二維的銀奈米結構方面,我們利用歸一導鈉法,分析稜鏡耦合系統{稜鏡/等效耦合層/銀薄膜(20 nm)/等效基板層};當在界面{銀薄膜(20 nm)/等效基板層}上的等效導納高於金屬本質導納ηm 之對應點-ηm時,金屬軌跡在導納圖上具有非常大之圓軌跡,此為長程表面電漿在銀薄膜激發時之重要特徵;在這裡,具高、低折射率的對稱膜堆被做為等效耦合層,用來連接金屬薄膜的等效導納至稜鏡的折射率,以造成全反射衰減;在這裡我們提出三種等效耦合層之連接方式,並比較其對於長程表面電漿波傳播長度之影響。此外,藉由導鈉分析法,我們設計可同時以p與s偏極光,在入射波長632.8nm及相同入射角度下激發長程表面電漿波之週期性多層膜結構。
此外,我們使用光追跡法分析負折射現象在三維的銀奈米線結構發生之條件。此單軸具吸收材料具有複數的三主軸折射率,當以p偏極光斜向由介電質層入射界面{介電質層/單軸具吸收材料}時,其等效折射率與複數的波向量依然滿足Fresnel方程式;在這裡我們將傳播在此單軸材料內的電磁場以複數偏極向量形式表示,並計算其波印亭向量;此外,我們在入射波長365nm及633nm下,分別分析波印亭向量、波向量在銀奈米線結構具有的負折射現象。
在三維的銀奈米結構方面,我們在實驗上使用斜向角度沉積法,在沉積角度86度(與基板法角的夾角)下製鍍各種具銀奈米結構之負折射率薄膜,如銀柱狀陣列、鋸齒狀與S型結構。我們利用分離式及偏極干涉儀在可見光波長下(532nm,639nm與690nm),量測此奈米薄膜的等效透射及反射係數,求得p偏極光與s偏極光之等效效介電係數、導磁係數、阻抗與等效折射率。此外,我們在沉積角度 86度下搭配交錯沉積技術,製鍍對稱與不對稱的鋸齒狀結構,並利用有限時域差分法模擬近場在單個奈米結構內的反磁現象,分析結構的外型對於此共振效應之影響。當奈米結構柱子間具有反磁偶磁共振行為時,薄膜的等效導磁係數之實部小於零。
論文英文摘要:In this work, negative refractive index, negative refraction and long-range surface-plasmon-polariton (LRSP) propagation in nano-scale silver films were analyzed and investigated. Silver films with negative refractive index were fabricated and demonstrated in the visible regime.
First, we use the normalized admittance diagram (NAD) analysis to design the prism-coupling system {prism/ equivalent coupling layer(ECL) /silver film(20nm) /equivalent substrate(ES)} for LRSP propagation in two-dimensional nanostructure of silver. The excitation of LSPP waves is characterized as a huge open loop of the NAD of the metal film at a designated angle of incidence. We propose three kinds of ECLs to complete the multilayer LSPP design: the intrinsic admittances of the ECLs are (i) real , (ii) infinite, and (iii) imaginary. Periodic symmetrical film stacks are used as the ECL to achieve the coupling effects. In addition, the multilayer structure for exciting s- and p-polarized LRSP propagation simultaneously is designed at the wavelength of 632.8 nm.
Negative refraction in three-dimensional nanostructures of silver is interpreted and analyzed using the complex ray tracing method. When the p-polarized incident light is incident on the {dielectric medium/uniaxial absorbent material(with complex-valued three principal indices)} interface, the effective refractive index experienced by the p-polarized light and the complex-valued wave vector of the refracted light still satisfy the Fresnel equation. Therefore, we can calculate the refracted angles of the wave vector and Poynting vector and analyze the conditions of the negative refraction in silver nanowires. Negative refraction of the Poynting vector and backward wave phenomenon in the silver nanowires are interpreted and presented at the wavelengths of 365 nm and 633 nm.
Several three-dimensional nanostructures of silver, such as nanorod arrays (NRA), zigzag and S-shaped structures, are deposited using glancing angle deposition (GLAD) technology. The equivalent transmission and reflection coefficients of the films are measured by walk-off and polarization interferometers in the visible regime. The retrieval method is used to recover the equivalent relative permeabilities , permittivities , admittance z, and refractive indices n of the films for p and s polarizations. We demonstrate that and satisfies the inequality and the real parts of n for p-polarized incident light are negative at the wavelengths of 532 nm, 639, and 690 nm. In addition, the zigzag structures with different shapes are fabricated using bideposition technique. We use the finite-difference time-domain (FDTD) method to simulate the magnetic reversed field in a single zigzag structure. The shape effect on the real parts of the equivalent permeabilities for zigzag structures is investigated.
論文目次:中文摘要 i
英文摘要 iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 xi
第一章 前言 1
1.1奈米金屬薄膜 1
1.1.1二維奈米結構之長程表面電漿波 1
1.1.2三維奈米結構之負折射現象 1
1.1.3具三維奈米結構之負折射率薄膜 2
1.2論文架構 2
第二章 二維銀奈米結構之長程表面電漿波 3
2.1文獻回顧 3
2.1.1對稱組態結構 3
2.1.2非對稱組態結構 4
2.1.3利用多層膜結構增長表面電漿傳播長度 5
2.1.4直接耦合技術激發長程表面電漿 6
2.1.5長程表面電漿之應用 7
2.2研究動機 8
2.3歸一化導納軌跡分析法 9
2.3.1導納基本定義 9
2.3.2金屬導納軌跡 10
2.3.3傳統表面電漿激發時之金屬導納軌跡 10
2.3.4以Sarid組態為例激發長程表面電漿波(p偏極光) 12
2.3.5長程表面電漿多層膜組態設計機制 12
2.3.6週期性對稱膜堆結構 14
2.4長程表面電漿多層膜結構設計(銀薄膜,厚度 20nm) 14
2.4.1 p偏極光入射激發長程表面電漿 14
2.4.2 s偏極光入射激發長程表面電漿 16
2.4.3在相同組態下同時以p與s偏極光激發長程表面電漿 18
2.4.4等效耦合層設計 22
2.4.4.1順時針方向連接之耦合層 23
2.4.4.2近乎垂直方向連接之耦合層 23
2.4.4.3逆時針方向連接之耦合層 24
2.4.5等效耦合層對長程表面電漿傳播長度之影響 25
2.4.6 p與s偏極光在相同組態與入射角度下激發長程表面電漿
波 29
第三章 三維銀奈米結構之負折射現象 34
3.1文獻回顧 34
3.1.1在銀奈米線結構之負折射現象 35
3.1.2非對稱組態結構 36
3.2研究動機 37
3.3光線追跡分析法 38
3.3.1複數向量場表示式 38
3.3.2時間平均與時變玻印亭向量(p偏極入射光) 42
3.4負折射現象產生條件(p偏極入射光) 44
3.4.1玻印亭向量之負折射現象 44
3.4.2波向量之負折射現象 44
3.5銀奈米線結構 47
3.5.1玻印亭向量之負折射現象 49
3.5.2波向量之負折射現象 49
3.6玻印亭向量與波向量同時產生負折射現象 50
第四章 具三維銀奈米結構之負折率薄膜 52
4.1文獻回顧 52
4.1.1奈米金屬柱(線)結構 53
4.1.2奈米共振環結構 57
4.1.3奈米銀陣列電漿共振模態 58
4.2研究動機 60
4.3銀奈米柱陣列結構 61
4.3.1製鍍方法 61
4.3.2偏極相關穿透光譜 63
4.3.3等效相位差量測 64
4.3.4銀奈米柱陣列之等效穿透與反射係數量測 66
4.3.5銀奈米柱陣列之等效電磁參數 68
4.4銀奈米鋸齒結構 69
4.4.1製鍍方法 69
4.4.2偏極相關穿透光譜 71
4.4.3銀奈米鋸齒結構之等效電磁參數(樣品(ii): Lu = Lb =450 nm)
72
4.4.4近場磁偶極共振模擬(樣品(ii), Lu = Lb =450 nm) 73
4.5銀奈米S型結構 77
4.5.1製鍍方法 77
4.5.2偏極相關穿透光譜 79
4.5.3銀奈米S型結構之等效電磁參數(樣品(i):d=260 nm、N=2
次、Lav=280 nm) 80
4.5.4近場磁偶極共振模擬(樣品(i):d=260 nm、N=2、Lav=280
nm) 81
第五章 結論 83
參考文獻 85
論文參考文獻:[1] H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, Berlin Heidelberg, 1988).
[2] E. N. Economu, “Surface plasmons in thin films,” Phys. Rev. 182, 539-554 (1969).
[3] C.-W. Yu and Y.-J. Jen, “Effects of the equivalent coupling layer on ultra-long-range surface-plasmon-polariton waves “Opt. Express 18, 7982-7993 (2010).
[4] Y.-J. Jen,, A. Lakhtakia, C.-W. Yu and T.-Y. Chan, “Multilayered structures for p- and s-Polarized long-range surface-plasmon-polariton propagation,” J. Opt. Soc. Am. A 26, 2600 -2606(2009).
[5] F. Yang, J. R. Sambles and G. W. Bradberry, “Long-range modes supported by thin films,” Phys. Rev. B 44, 5855-5872 (1991).
[6] P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B 63, 125417 (2001).
[7] L. Wedler and R. Haupt, “Long-range surface plasmon-polaritons in asymmetric layer structures,” J. Appl. Phys. 59, 3289-3291 (1986).
[8] D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927-1930 (1981).
[9] A. Lakhtakia, Y.-J. Jen and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: Experimental evidence,” J. Nanophoton. 3, 033506 (2009).
[10] Y.-J. Jen,, A. Lakhtakia, C.-W. Yu and T.-Y. Chan, “Negative refraction in a uniaxial absorbent dielectric material,” Eur. J. Phys. 30, 1381-1390 (2009).
[11] R. Rashed, “A pioneer in anaclastics: Ibn Sahl on burning mirrors and lenses,” Isis 81, 464-91 (1990).
[12] C. F. Bohren, “Physics textbook writing: Medieval, monastic mimicry,” Am. J. Phys. 77, 101-3 (2009).
[13] A. Lakhtakia, M. W. McCall and W. S. Weiglhofer, “Brief overview of recent developments on negative phase-velocity mediums (alias left-handed materials),” AEÜ Int. J. Electron. Commun. 56, 407-10 (2002).
[14] A. D. Boardman, N. King and L. Velasco, “Negative refraction in perspective,” Electromagnetics 25, 365-89 (2005).
[15] R. A. Shelby, D. R. Smith and S. Schultz, “Experimental verification of a negative index of refraction, ” Science 292, 77-9 (2001).
[16] J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3566-3969 (2000).
[17] J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy and Z. Zhang “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[18] R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489-491 (2001).
[19] A. Lakhtakia, M. W. McCall and W. S. Weiglhofer “Brief overview of recent developments on negative phase-velocity mediums (alias left-handed materials)” AEÜ Int. J. Electron. Commun. 56, 407-10 (2002).
[20] J. B. Pendry, A. J. Holden , W. J. Stewart and I. Youngs, “Extremely low fequency plasmons in metallic mesostructures,” Phys. Pev. Lett. 76, 4773- 4776 (1996).
[21] J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory tech. 47, 2075-2084 (1999).
[22] Viktor A. Podolskiy, Andrey K. Sarychev and Vladimir M. Shalaev, “Plasmon modes and negative refraction in metal nanowire composites,” Opt. Express 11, 735-745 (2003).
[23] S. Xiao, U. K. Chettiar, A. V. Kildishev, V. P. Drachev and V. M. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett. 34. 3478-3480 (2009).
[24] J. J. Burke, G. I. Stegeman and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186-5201 (1986).
[25] F. Y. Kou and T. Tamir, “Range extension of surface plasmons by dielectric layers,” Opt. Lett. 12, 367 (1987).
[26] J. Guo and R. Adato, “Extended long range Plasmon waves in finite thickness metal film and layered dielectric materials,” Opt. Express 14, 12409-12418 (2006).
[27] R. Adato and J. Guo, “Characteristics of ultra-long range surface plasmon waves at optical frequencies,” Opt. Express 15, 5008-5017 (2007).4.
[28] A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. Larsen and S. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Light. Technol. 23, 413-22 (2005).
[29] R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Light. Technol. 24, 477-94 (2006).
[30] P. Berini, R. Charbonneau and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Letters 7, 1376-80 (2007).
[31] A. Degiron, P. Berini and D. R. Smith, “Guiding light with long-range plasmons,” Optics and Photonics News 30-34 (2008).
[32] H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (Adam Hilger, Bristol, 1986).
[33] M. Takabayashi, M. Haraguchi and M. Fukui, “Propagation length of guided waves in lossy Si film sandwiched by identical dielectrics,” J. Opt. Soc. Am. B. 12, 2406–2411 (1995).
[34] P. A. Belov, “Backward waves and negative refraction in uniaxial dielectrics with negative dielectric permittivity along the anisotropy axis,” Microwave Opt. Technol. Lett. 37, 259-263 (2003).
[35] Y. Liu, G. Bartal and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 29, 15439-15448 (2008).
[36] Y. W., P. Shi, H. Xin and L. Wu, “Complex ray tracing in biaxial anisotropic absorbing media,” J. Opt. A: Pure Appl. Opt. 10, 075009 (2008).
[37] R. A. Depine and A. Lakhtakia, “A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity,” Microwave Opt. Technol. Lett. 41, 315 (2004).
[38] A. N. Lagarkov and A. K. Sarychev, “Electromagnetic properties of composites containing elongated conducting inclusions,” Phy. Rev. B 53, 6318-6336 (1996).
[39] V. A. Podolskiy, A. K. Sarychev and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Opt. Phys. Mater. 11, 65-74 (2002).
[40] A. V. Kildishev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev and V. M. Shalaev, “Negative refractive index in optics of metal–dielectric composites,” J. Opt. Soc. Am. B 23, 423-433 (2006).
[41] M. Rajput and R.K. Sinha, “All-angle negative refraction for visible light from left-handed metallo-dielectric photonic crystal theoretical and numerical demonstration with nanophotonic device application,” Appl. Phys. B 98, 99-106 (2010).
[42] S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny and C. M. Soukoulis, ” Magnetic Response of Metamaterials at 100 Terahertz,” Science 306, 1351-1353 (2004).
[43] Y.-P. Zhao, S. B. Chaney and Z.-Y. Zhang, “Absorbance spectra of aligned Ag nanorod arrays prepared by oblique angle deposition,” J. Appl. Phys. 100, 063527 (2007).
[44] S.B. Chaney, Z.-Y. Zhang and Y.-P. Zhao, “Anomalous polarized absorbance spectra of aligned Ag nanorod arrays,” Appl. Phys. Lett. 89, 053117 (2006).
[45] Yi-Jun Jen and Ching-Wei Yu, “Metal and dielectric duality for an aligned Al nano-rod array,” Appl. Phy. Lett. 91, 021109 (2007). (Selected by Virtual Journal of Nanoscale Science & Technology 16, 4 2007 ).
[46] Y.-J. Jen, Y.-H. Chen, C.-W. Yu, and Y.-P. Li, “Near-perfect modulator for polarization state of light,” J. Nanophoton. 2, 029504 (2008).
[47] Y.-J. Jen, C.-W. Yu, Ch.-F. Lin, Y.-H. Liao and C.-Y. Peng “Modulation of the polarization state of light using a weak anisotropic thin film,” Opt. Lett. 33, 467-469 (2008).
[48] Y.-J. Jen, A. Lakhtakia, C.-W. Yu, and C.-T. Lin, “Vapor-deposited thin films with negative real refractive index in the visible regime,” Opt. Express 17, 7784-7789 (2009).
[49] D. R. Smith and S. Schultz, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[50] X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr. and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[51] Y.-J. Jen, A. Lakhtakia and C.-W. Yu, “Negative real parts of the equivalent permittivity, permeability, and refractive index of sculptured-nanorod arrays of silver “J. Vac. Sci. Technol. A (2010). (to be published)
[52] K. Robbie, J. C. Sit and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115-122 (1998).
[53] P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,“ Phys. Rev. B 6, 4370-4379 (1972).
論文全文使用權限:同意授權於2011-08-24起公開