現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:銀-二氧化矽-銀奈米三明治薄膜之研製與負折射率光學特性量測 [以論文名稱查詢館藏系統]
論文英文名稱:An Ag-SiO2-Ag Nanosandwich Film with Negative Refractive Index:Fabrication and Optical Measurement [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:電資學院
系所名稱:光電工程系研究所
畢業學年度:99
出版年度:100
中文姓名:周正杰
英文姓名:Jheng-Jie Jhou
研究生學號:98658001
學位類別:碩士
語文別:中文
口試日期:2011-07-20
論文頁數:90
指導教授中文名:任貽均
指導教授英文名:Yi-Jun Jen
口試委員中文名:藍永強;周趙遠鳳;陳隆建
口試委員英文名:Yung-Chiang Lan;Yuan-Fong Chau;Lung-Chien Chen
中文關鍵詞:超穎材料反磁共振負折射率
英文關鍵詞:metamaterialmagnetic field reversalnegative refractive index
論文中文摘要:本研究利用電子束蒸鍍系統與斜向角度沉積技術(GLAD),並搭配基板方位角旋轉來依序沉積出銀-二氧化矽-銀奈米三明治薄膜,進而分析與比較在不同薄膜厚度下所造成不同奈米三明治直徑之尺寸分佈,其相對於光學常數之關係。由於上下兩層銀奈米柱中的反相電偶極共振而造成反向磁場之現象,使其等效相對導磁係數的實部為負值。在光學量測上,利用分離式(Walk-off)干涉儀與偏極式(Polarization)干涉儀來量測銀-二氧化矽-銀奈米三明治薄膜在可見光波段下之透射係數與反射係數,進一步得到此薄膜之四個等效光學常數:等效折射率、相對本質阻抗、相對介電係數與相對導磁係數,進而分析不同的各層厚度與直徑尺寸分布造成其光學特性之變化關係,結果驗證此結構為全可見光譜負折射率的光學薄膜。
論文英文摘要:In this work, the silver (Ag) / silicon-dioxide (SiO2) / silver (Ag) nanosandwich films are deposited using glancing angle deposition technique with continuous azimuthal rotation during electron beam evaporation. The transmission and the reflection coefficients of the Ag-SiO2-Ag nanosandwich films for p-polarization and s-polarization are measured by walk-off and polarization interferometers. Accordingly, the equivalent electromagnetic parameters of each film are derived from the two coefficients. The measured results indicate that films exhibit negative refractive indices over the visible regime. Furthermore, we analyze the optical properties caused by the variation of the different thicknesses of layers and the distribution of nanosandwich sizes. It is demonstrated that the induced reversal magnetic dipole moment leads to the negative real part of the equivalent relative permeability.
論文目次:中文摘要(i)
英文摘要(ii)
誌謝(iii)
目錄(v)
表目錄(viii)
圖目錄(ix)
第一章 緒論(1)
1.1 前言與研究動機(1)
1.2 負折射率材料(2)
1.3 負折射率之文獻回顧(7)
1.4 金屬-介質-金屬奈米三明治結構(11)
第二章 原理介紹(15)
2.1 等效光學常數(15)
2.1.1 等效折射率與相對本質阻抗(15)
2.1.2 等效相對介電常數與相對導磁係數(17)
2.2 透射與反射之絕對相位(18)
2.2.1 透射之絕對相位(18)
2.2.2 反射之絕對相位(19)
2.3 透射係數與反射係數(20)
2.4 有限時域差分法(21)
2.4.1 一維結構之有限時域差分法運作模式(22)
2.4.2 吸收邊界(24)
2.5 金屬-介質-金屬奈米三明治結構之磁共振現象(24)
第三章 實驗架構與量測系統(27)
3.1 蒸鍍系統 (27)
3.2 製鍍步驟 (29)
3.3 銀-二氧化矽-銀奈米三明治結構之製鍍方法(30)
3.4 透射式光譜量測系統(32)
3.5 干涉儀量測系統(33)
3.5.1 雷射光源(33)
3.5.2 透射率與反射率量測架構(34)
3.5.3 偏極式干涉儀(34)
3.5.4 分離式干涉儀(35)
3.5.5 誤差來源(38)
第四章 實驗結果、分析與討論(39)
4.1 銀-二氧化矽-銀奈米三明治結構與製鍍關係(39)
4.1.1 奈米三明治微觀結構製鍍結果(39)
4.1.2 奈米三明治微觀結構之不同等效直徑尺寸分布(43)
4.1.3 奈米三明治結構薄膜之厚度、直徑對照表(46)
4.2 透射與反射光譜(47)
4.3 透射光與反射光絕對相位差(53)
4.3.1 透射光絕對相位差(53)
4.3.2 反射光絕對相位差(55)
4.4 透射係數與反射係數(58)
4.5 等效光學常數(60)
4.5.1 等效折射率與相對本質阻抗(60)
4.5.2 品質因數(FOM)(65)
4.5.3 相對介電常數與相對導磁係數(68)
4.6奈米三明治直徑分布與磁共振之關係(75)
第五章 結論(84)
參考文獻(85)
論文參考文獻:[1] K. Robbie, J. C. Sit and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B, vol. 16, 1115-122, 1998.
[2] Herma van Kranenburg and Cock Lodder, “Tailoring growth and local composition by oblique-incidence deposition: a review and new experimental data,” Materials Science and Engineerin, Rll, 295-354, 1994.
[3] T. Motohiro and Y. Taga, “Thin film retardation plate by oblique deposition,” Applied Optics, vol. 28, No. 13, 1989.
[4] Y. Takeda, N. Takeuchib, T. Fukano, T. Motohiro, “Obliquely deposited metal films for polarizers,” Appl. Surf. Sci., vol. 244, pp. 209-212, 2005.
[5] Y. J. Jen, C. H. Chen, and C. W. Yu, “Deposited metamaterial thin film withnegative refractive indexand permeability in the visible regime,” Opt. Lett., vol. 36, No. 6, 2011.
[6] A. V. Kildishev, W. Cai, U. K. Chettial, A. K. Sarychev, and V. M. Shalaev, “Negative refractive index in optics of metal-dielectric composites,” J. Opt. Soc. Am. B., vol. 23, pp. 423-433, 2006.
[7] Dennis M. Sullivan, “Electromagnetic Simulation Using the FDTD Method,” pp. 50-60, 2000.
[8] R. A. Shelby, D. R. Smith, & S. Schultz, “Experimental verification of a negative index of refraction,” Science, vol. 292, pp. 77–79, 2001.
[9] J. B. PENDRY, “Negative refraction,” Contemporary Physics, vol. 45, No. 3, pages 191-202, 2004.
[10] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser & S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. vol. 84, No. 18, pp. 4184–4187, 2000.
[11] J. B. Pendry, A. J. Holden, D. J. Robbins & W. J. Stewart, “Magnetism from onductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microw. Theory ech. vol. 47, No. 11, pp. 2075–2084, 1999.
[12] J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. vol. 85, pp.3966-3969, 2000.
[13] J. Chen, Y. Wang, B. Jia, T. Geng, X. Li, L. Feng, W. Qian, B. Liang, X. Zhang, M. Gu and S. Zhuang, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nature Photonics, vol. 5, 2011.
[14] J. B. Pendry, D. Schurig, D. R. Smith, “Controlling Electromagnetic Fields,” Science, vol. 312, 2006.
[15] K. L. Tsakmakidis, A. D. Boardman and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature, vol. 450, 2007.
[16] V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. vol. 10, pp. 509–514, 1968.
[17] J. B. Pendry, “Metamaterials and the Control of Electromagnetic Fields,” in Conference on Coherence and Quantum Optics, OSA Technical Digest (CD) (Optical Society of America, 2007), paper CMB2.
[18] V. M. Shalave, W. Cai, U. K. Chettial, “Negative index of refraction in optical metamaterial,” Opt. Lett., vol. 30, pp. 3356-3358, 2005.
[19] J. B. Pendry, A. J. Holden, W. J. Stewart,and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett. vol. 76, 4773–4776, 1996.
[20] J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microw. Theory Tech. vol. 47, No. 11, pp. 2075–2084, 1999.
[21] R. A. Shelby, D. R. Smith, S. Schultz, “Experimental VeriTcation of a Negative Index of Refraction,” Science, vol. 292, pp. 77–79, 2001.
[22] V. A. Podolskiy, A. K. Sarychev and V. M. Shalaev, “Plasmon modes and negative refraction in metal nanowire composites,” Opt. Express, vol. 11, 735-745 (2003).
[23] G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, S. Linden, “Simultaneous Negative Phaseand Group Velocity of Lightin a Metamaterial,” Science, vol. 312, No. 5775 pp. 892-894, 2006.
[24] U. K. Chettiar, A. V. Kildishev, H. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, “ Double Negative Index Metamaterial: Simultaneous Negative Permeability and Permittivity at 812 nm,” Photonic Metamaterials: From Random to Periodic, OSA Technical Digest (CD) (Optical Society of America, 2007), paper MA3.
[25] J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature, vol. 455, 376-379, 2008.
[26] S. Xiao, U. K. Chettiar, A. V. Kildishev, V. P. Drachev and V. M. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett. vol. 34. 3478-3480, 2009.
[27] M. Rajput, R.K. Sinha, “All-angle negative refraction for visible light from left-handed metallo-dielectric photonic crystal: theoretical and numerical demonstration with nanophotonic device application,” Appl. Phys. B, vol. 98, pp. 99-106, 2010.
[28] F. Garwe, C. Rockstuhl, C. Etrich, U. Hubner, U. Bauerschafer, F. Setzpfandt, M. Augustin, T. Pertsch, A. Tunnermann and F. Lederer, “Evaluation of gold nanowire pairs as a potential negative index material,” Applied Physics B: Lasers and Optics, vol. 84, No. 1-2, 139-148, 2006.
[29] U. K. Chettiar, A. V. Kildishev, T. A. Klar, V. M. Shalaev, “Negative index metamaterial combining magnetic resonators with metal films,” Opt. Express, vol. 14, No. 17, 2006.
[30] K. H. Su, Q. H. Wei, and X. Zhang, “Tunable and augmented plasmon resonances of Au/SiO2 /Au nanodisks,” Applied Physics Letters, vol. 88, Issue 6, id. 063118 (3 pages), 2006.
[31] S.M.Wang, T. Li, H. Liu, F.M. Wang, S. N. Zhu, and X. Zhang, “Magnetic plasmon modes in periodic chains of nanosandwiches,” Opt. Express, vol. 16, No. 6, 3560-3565, 2008.
[32] A. Dmitriev, T. Pakizeh, M. Kall, and D. S. Sutherland, “Gold-silica-gold nanosandwiches: tunable bimodal plasmonic resonators,” Small, vol 3, 294-299, 2007.
[33] G. X. Du, T. Mori, M. Suzuki, S. Saito, H. Fukuda, M. Takahashi, “Magneto-optical effects in nanosandwich array with plasmonic structure of Au/[Co/Pt]n/Au,” Journal of Applied Physics, vol. 107, Issue: 9, pp. 09A928, 2010.
[34] T. Pakizeh, M. S. Abrishamian, N. Granpayeh, A. Dmitriev, and M. Kall, “Magnetic-field enhancement in gold nanosandwiches,” Opt. Express, vol. 14, Issue 18, pp. 8240-8246, 2006.
[35] T. Pakizeh, A. Dmitriev, M. S. Abrishamian, N. Granpayeh, and M. Kall, “Structural asymmetry and induced optical magnetism in plasmonic nanosandwiches,” JOSA B, vol. 25, Issue 4, pp. 659-667, 2008.
[36] V. D. Lam, J. B. Kim, S. J. Lee, Y. P. Lee, and J. Y. Rhee, “Dependence of the magnetic-resonance frequency on the cut-wire width of cut-wire pair medium,” Opt. Express, vol. 15, Issue 25, pp. 16651-16656, 2007.
[37] Q. Li and G. P. Wang, “Tunable photonic metamaterials in the near infrared frequencies,” Opt. Express, vol. 18, Issue 13, pp. 14123-14128, 2010.
[38] G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Express, vol. 30, Issue 23, pp. 3198-3200, 2005.
[39] N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adva. Matt. vol. 19, pp. 3628-3632, 2007
[40] C. Helgert, C. Rockstuhl, C. Etrich, E.-B. Kley, A. Tunnermann, F. Lederer and T. Pertsch, “Effects of anisotropic disorder in an optical metamaterial, ” Applied Physics A: Materials Science & Processing, vol 103, No. 3, pp. 591-595, 2010.
[41] Y. Jeyaram, S. K. Jha, M. Agio, J. F. Loffler, and Y. Ekinci, “Magnetic metamaterials in the blue range using aluminum nanostructures, ” Opt. Lett., vol. 35, Issue 10, pp. 1656-1658, 2010.
[42] B. Joshi, X. Wen, K. Sun, W. Lu, and Q. H. Wei, “Fabrication and characterization of coupled metal-dielectric-metal nanoantennas, ” J. Vac. Sci. Technol. B, vol. 28, C6O21, 2010.
[43] B. Joshi, A. Chakrabarty, Q. H. Wei, “Numerical Studies of Metal – Dielectric – Metal Nanoantennas, ” IEEE Transactions on Nanotechnology, vol. 9, Issue 6, pp. 701 – 707, 2010.
[44] W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors, ” Opt. Express, vol. 15, Issue 6, pp. 3333-3341, 2007.
[45] W. X. Huang, X. G. Yin, C. P. Huang, Q. J. Wang1, T. F. Miao, and Y. Y. Zhu, “Optical switching of a metamaterial by temperature controlling, ” Appl. Phys. Lett. vol. 96, 261908, 2010.
[46] D. Li, L. Qin, D. X. Qi, F. Gao, R. W. Peng, J. Zou,, Q. J. Wang, M. Wang, “Tunable electric and magnetic resonances in multilayered metal/dielectric nanoplates at optical frequencies, ” Journal of Physics D: Applied Physics, vol. 43, Issue 34, No. 345102, 2010.
[47] S. Wu, G. Wang, Q. Wang, L. Zhou, J. Zhao, C. Huang and Y. Zhu, “Novel optical transmission property of metal–dielectric multilayered structure, ” Journal of Physics D: Applied Physics, vol. 42, No. 22, 2009.
[48] C. Garcia-Meca, R. Ortuno, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum, ” Opt. Lett., vol. 34, Issue 10, pp. 1603-1605, 2009.
[49] C. Garcia-Meca*, J. Hurtado, J. Marti, A. Martinez, W. Dickson and A. V. Zayats, “Low-Loss Multilayered Metamaterial Exhibiting a Negative Index of Refraction at VisibleWavelengths, ” Phys. Rev. Lett., vol. 106, 067402, 2011.
[50] D. R. Smith*, S. Schultz, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B, vol. 65. 195104, pp. 1-5, 2002.
[51] A. A. Govyadinov, V. A. Podolskiy, and M. A. Noginov, “Active metamaterials: Sign of refractive index and gain-assisted dispersion management,” Appl. Phys. Lett. vol. 91, 191103, 2007.
[52] R.A. Depine, A. Lakhtakia, “A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity,” Microw. Opt. Technol. Lett., vol. 41, pp. 315-316, 2004.
[53] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. AP-14, pp. 302-307, 1966.
[54] J.P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. vol. 114, pp. 185-200, 1994.
[55] 李正中,光學薄膜與鍍膜技術,台北:藝軒圖書出版社, 2006,第292頁。
論文全文使用權限:同意授權於2013-08-18起公開