現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:交錯沉積對稱型奈米柱陣列之光學性質量測 [以論文名稱查詢館藏系統]
論文英文名稱:Optical birefringence measurements for bideposited symmetric nanorod arrays [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:電資學院
系所名稱:光電工程系研究所
畢業學年度:99
出版年度:100
中文姓名:王士浩
英文姓名:Shih-Hao Wang
研究生學號:98658055
學位類別:碩士
語文別:中文
口試日期:2011-07-20
論文頁數:53
指導教授中文名:任貽均
指導教授英文名:Yi-Jun Jen
口試委員中文名:陳隆建;周趙遠鳳;藍永強
口試委員英文名:Lung-Chien Chen;Yuan-Fong Chau;Yung-Chiang Lan
中文關鍵詞:交錯沉積對稱膜堆相位延遲片
英文關鍵詞:bidepositionsymmetric multilayersphase retardation
論文中文摘要:本研究係探討一交錯沉積對稱型奈米柱陣列之光學性質。利用連續交錯沉積技術製鍍具有鋸齒結構之五氧化二鉭(Ta2O5)奈米柱陣列,每根奈米柱係由數個相同單位的次結構A、B所組成,其次結構A與B之沉積平面相互正交,形成以高低折射率交替之週期性對稱膜堆(ABA)。不同於非均向薄膜的折射率與相位差會因入射光的偏振態而改變,本研究在固定次結構內單一鋸齒厚度,改變沉積角度的情況下,製鍍單層奈米柱陣列,量測兩個正交偏振態之折射率,再以此單層折射率設計高低折射率交替之對稱膜堆(ABA)結構,並量測其正交偏振態之等效折射率與等效相厚度,進而分析相位延遲量在不同波長下的表現,並利用多週期的膜層堆疊來設計所需之相位延遲量。
論文英文摘要:In this study, optical birefringence of bideposited symmetric nanorod arrays is investigated. A Ta2O5 nanorod array with zigzag structures is fabricated by serial bideposition technique. Each nanorod is composed of several unit sections and each section is composed of symmetrical subsections. From the lateral view, the sectional layer is composed of symmetrical layers ABA. The deposition plane of A is perpendicular to that of B. The equivalent refractive index and phase retardation of multiple units are analyzed and measured using ellipsometry. The result indicates that a bideposited symmetric nanorod array is potentially applied as a waveplate.
論文目次:中文摘要....................................................................................................................i
英文摘要………………………………………………………………………………ii
誌謝…………………………………………………………………………………...iii
目錄…………………………………………………………………………………….v
表目錄………………………………………………………………………………vii
圖目錄……………………………………………………………………………….viii
第一章 緒論 …...1
1.1 文獻回顧 …...1
1.2 非均向光學薄膜 ….…2
1.3 生物特性於光學應用 …...4
1.4 研究動機 …...6
第二章 原理介紹 …...8
2.1 空間軸與主軸之特性 …..8
2.2 斜向沉積技術 …..9
2.3 連續交錯沉積薄膜 …..10
2.3.1 交錯沉積技術 …10
2.3.2 交錯沉積薄膜的雙折射現象 ….11
2.4 薄膜矩陣法 ….13
2.5 對稱膜堆 ….15
第三章 實驗架構與量測系統 ….20
3.1 蒸鍍系統 ….20
3.2 製鍍流程與事先準備 ….21
3.3 實驗量測系統 ….23
3.3.1 穿透式光譜儀量測系統 ….23
3.3.2 穿透式光譜儀校正程序 ….24
3.3.3 橢圓偏光儀量測系統 ….25
3.3.4 橢圓偏光儀校正程序 ….26
第四章 實驗設計與結果討論 ….27
4.1 交錯沉積對稱型奈米柱陣列 ….27
4.2 單層交錯沉積薄膜之資料庫參數 ….29
4.2.1 單層斜向柱狀結構之製鍍 ….29
4.2.2 單層交錯沉積薄膜與雙折射特性 ….30
4.3 實驗設計與量測結果 ….39
4.3.1 交錯沉積對稱型奈米柱陣列之設計 ….39
4.3.2 穿透光譜與穿透相位量測結果 ….42
4.4 討論 ….46
第五章 結論 ….49
參考文獻 ….50
論文參考文獻:[1] N. O. Young and J. Kowal, “Optically active fluorite films,” Nature, vol. 183, pp. 104-105, 1959.
[2] T. Motohiro and Y. Taga, “Thin film retardation plate by oblique deposition,” Applied optics, vol. 28, pp. 2466-2482, 1989.
[3] K. Robbie and M. J. Brett, “First thin film realization of a helicoidal bianisotropic medium,” Journal of Vacuum Science & Technology A, vol. 13, No.6, pp. 2991-2993, 1995.
[4] K. D. Harris, K. L. Westra and M. J. Brett, “Fabrication of Perforated Thin Films with Helical and Chevron Pore Shapes,” Electrochemical and Solid-State Letters, vol. 4, No.6, pp. C39-C42, 2001.
[5] K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams and C. Buzea, ” Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Review of Scientific Instruments, vol. 75, No. 4, pp.1089-1097, 2004.
[6] A. Lakhtakia and R. Messier, “Sculptured thin films – I. Concepts,” Materials Research Innovations, vol. 1, pp. 145-148, 1997.
[7] A. Lakhtakia and R. Messier, ‘‘Sculptured thin films—II. Experiments and applications,’’ Materials Research Innovations, vol. 2, pp. 217-222, 1999.
[8] F. Horowitz, “Structure-Induced Optical Anisotropy in thin film,” PhD dissertation, University of Arizona, Optical Science Center, 1983.
[9] M. C. Simon, and L. I. Perez, “Reflection and transmission coefficients in uniaxial crystals,” Journal of Modern Optics, vol. 38, pp. 503-518, 1991.
[10] I. J. Hodgkinson and Q. H. Wu, “Birefringent Thin Films and Polarizing Elements,” Singapore:World Scientific, 1997.
[11] I. J. Hodgkinson, “Optical anisotropy in thin films deposited obliquely: in situ observations and computer modeling,” Applied Optics, vol. 30, pp. 1303-1312, 1991.
[12] H. Wang, “Reflection/ transmission measurements of anisotropic films with one of the principal axes in the direction of columnar growth,” Journal of Modern Optics, vol. 42, pp. 497-505, 1995.
[13] H. Wang, “Determination of optical constants of absorbing crystalline thin films from reflectance and transmittance measurements with oblique incident,” Journal of the Optical Society of America A, vol. 11, pp. 2331-2337, 1994.
[14] I. J. Hodgkinson and A. Lakhtakia, “On the Motohiro-Taga interface for biaxial columnar media,” Optical Engineering, vol. 37, pp. 3268-3271, 1998.
[15] G. Y. Slepyan and A. S. Maksimenko, “Motohiro-Taga interface in sculptured thin films- absence of Bragg phenomna,” Optical Engineering, vol. 37, pp. 2843-2847, 1998.
[16] Q. H. Wu, I. J. Hodgkinson and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Optical Engineering, vol. 39, pp. 1863-1868, 2000.
[17] T. Smy, D. Vick, M. J. Brett, S. K. Dew, A. T. Wu and J. C. Sit, “Three-dimensional simulation of film microstructure produced by lancing angle deposition,” Journal of Vacuum Science and Technology A, vol. 18, pp. 2507-2512, 2000.
[18] I. J. Hodgkinsom, Q. H. Wu, J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely depositied films of tantalum oxide, titanium oxide, and zirconium oxide,” Applied Optics, vol. 37, pp. 2653-2659, 1998.
[19] F. Horowitz and H. A. Macleod, “Determination of principal refractive indices of birefringent films,” Optical Interference Coatings, Vol. 6 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C.), pp. 203–206, 1988.
[20] Y. J. Jen and C. L. Chiang, “Enhanced polarization conversion for an anisotropic thin film,” Optics Communications, vol. 265, pp.446-453, 2006.
[21] Y. J. Jen, C. Y. Peng and H. H. Chang, “Optical constant determination of an anisotropic thin film via polarization conversion,” Optics Express, vol.15, No. 8, pp. 4445-4451, 2007.
[22] C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour, vol. 26, pp. 79-84, 1967.
[23] Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnol, Vol. 2, No. 12, pp. 770-774, 2007.
[24] H. Ghiradella, et al. “Ultraviolet reflection of a male butterfly: Interference color caused by thin-layer elaboration of wing scales,” Science Magazine, Vol. 178, pp. 1214-1217, 1972.
[25] Y. J. Jen, M. J. Lin and J. H. Chao, “Single dielectric columnar thin film as a humidity sensor,” Sensors & Actuators, B: Chemical, Vol. 149, pp. 67-70, 2010.
[26] N. W. Roberts, T. H. Chiou, N. J. Marshall, and T. W. Cronin, “A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region,” Nature Photonics, Vol. 3, pp. 641-644, 2009.
[27] 李正中,“薄膜光學與鍍膜技術”,臺北,藝軒圖書出版社,第六版,2009。
[28] K. Robbie, J. C. Sit and M. J. Brett, “Advanced techniques for glancing angle deposition,” Journal of Vacuum Science & Technology B, Vol. 16, pp. 1115-1122, 1998.
[29] H. A. Macleod, “Thin film optical filters”3rd ed., Institute of Physics Publishing. Bristol and Philadelphia, 2001.
論文全文使用權限:同意授權於2013-08-18起公開