現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:鋁-二氧化矽-鋁錐形奈米三明治陣列之研製與負折射率光學特性量測 [以論文名稱查詢館藏系統]
論文英文名稱:An Al-SiO2-Al Conical Nanosandwich Array with Negative Refractive Index:Fabrication and Optical Measurement [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:電資學院
系所名稱:光電工程系研究所
畢業學年度:99
出版年度:100
中文姓名:王緯豪
英文姓名:Wei-Hao Wang
研究生學號:98658029
學位類別:碩士
語文別:中文
口試日期:2011-07-20
論文頁數:58
指導教授中文名:任貽均
指導教授英文名:Yi-Jun Jen
口試委員中文名:周趙遠鳳;藍永強;李金連
中文關鍵詞:負折射率反磁共振負導磁係數
英文關鍵詞:negative equivalent refractive indexmagnetic response reversalnegative equivalent permeability
論文中文摘要:本研究是利用電子蒸鍍系統與斜向角度沉積技術(GLAD),並搭配基板的方位角旋轉依序沉積鋁-二氧化矽-鋁錐形奈米三明治陣列之薄膜,由於上下鋁柱的電場方向相反所造成的電磁感應,其反向的電場在介質層中進行耦合而造成磁場反轉的情形,使得等效導磁係數的實部為負值。在實驗量測上,利用分離式(Walk-off)干涉儀以及偏極式(Polarization)干涉儀量測薄膜在可見光波段之透射係數與反射係數,並進一步求得薄膜的四個等效光學常數:折射率、相對本質阻抗、相對介電係數與相對導磁係數,從而分析光學薄膜在直徑尺寸分布與不同的各層厚度之變化關係,由結果得知此結構在可見光區為具有高穿透率之負折射率薄膜。
論文英文摘要:In this work, the conical nanosandwich array made of aluminum/silicon dioxide/aluminum is fabricated by glancing angle deposition technology with continuous substrate rotation during deposition. The magnetic field reversal related to negative real part of equivalent permeability is analyzed and simulated for the coupled anti-phase electric fields in the dielectric layer. In the measurement, the equivalent transmission and reflection coefficients of the thin films are measured by polarization and walk-off interferometers in the visible regime. The films exhibit high transmission in the visible regime. Furthermore, the equivalent permittivity and permeability are computed from the equivalent transmission and reflection coefficients. Besides the equivalent permeability, both the index of refraction and the equivalent permittivity of the sandwich nanostructure thin film are negative.
論文目次:中文摘要(i)
英文摘要(ii)
誌謝(iii)
目錄(iv)
表目錄(vi)
圖目錄(vii)
第一章 緒論與文獻回顧(1)
1.1 前言(1)
1.2 文獻回顧(2)
1.2.1左手介質材料(2)
1.2.2雙共振環結構(3)
1.2.3金屬/介質堆疊之負折射率材料(4)
第二章 原理介紹(12)
2.1等效折射率與相對本質阻抗(12)
2.2等效相對介電係數與導磁係數(13)
2.3實驗量測之透射係數與反射係數(14)
2.4定義量測之偏振光(14)
2.5金屬-介質-金屬奈米三明治結構之磁共振現象 (15)
第三章 實驗架構與量測系統(16)
3.1真空製鍍系統(16)
3.2前置工作與製鍍步驟(19)
3.3鋁/二氧化矽/鋁之奈米三明治陣列的製鍍(20)
3.3.1實驗參數(20)
3.3.2製鍍技術之方法與流程(20)
3.4偏極與分離式干涉儀量測系統(22)
3.4.1偏極干涉儀(22)
3.4.2分離式干涉儀(22)
3.5透射光譜量測系統(23)
第四章 實驗結果討論與分析(25)
4.1鋁/二氧化矽/鋁三明治陣列薄膜的微觀結構(25)
4.1.1三明治結構的製鍍結果(25)
4.1.2奈米三明治結構的等效直徑分佈(31)
4.2鋁/二氧化矽/鋁之圓錐狀三明治陣列薄膜的光學常數量測結果(34)
4.2.1等效折射率與本質阻抗(34)
4.2.2品質因數與透射率(40)
4.2.3相對導磁係數與相對介電係數(43)
4.3鋁/二氧化矽/鋁三明治陣列薄膜的微觀結構(49)
4.3.1 近場模擬微觀結構之物理現象(49)
4.3.2 FDTD模擬實際結構之方法(50)
4.3.3 可見光範圍之磁場共振與結構直徑之關係(52)
第五章 結論(56)
參考文獻(57)
論文參考文獻:[1] V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of є and μ,” Sov. Phys. Usp., vol. 10, No. 4, 509-514, 1968.
[2] J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart, “ Magnetism from conductors and enhanced nonlinear phenomena ,” IEEE Trans. Microwave Theory Tech., vol. 47, 2075-2084, 1999.
[3] S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-Infrared negative-Index metamaterials,” Phys Rev Lett., vol. 95, 137404, 2005.
[4] V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt Lett., vol. 30, No. 24, 2005.
[5] C. M. Soukoulis, “Low-loss negative-index metamaterial attelecommunication wavelengths,” Opt Lett., vol. 31, No. 12, 2006.
[6] Y. Jeyaram, S. K. Jha, M. Agio, J. F. Löffler, and Y. Ekinci, “Magnetic metamaterials in the blue range using aluminum nanostructures,” Opt Lett., vol. 35, No. 10, 2010.
[7] A. V. Kildishev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and V. M. Shalaev, “Negative refractive index in optics of metal–dielectric composites,” J. Opt. Soc. Am. B., vol. 23, No. 3, 423-433, 2006.
[8] J. B. Pendry “Negative refraction makes a perfect lens,” Phys Rev Lett., vol. 85, No. 18, 3966-3969, 2000.
[9] W. Cai, U. K. Chettiar, H. K. Yuan, V. C. Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt Express, vol. 15, No. 6, 3333-3341, 2007.
[10] Tserkezis, N. Papanikolaou, G. Gantzounis, and N. Stefanou, “Understanding artificial optical magnetism of periodic metal-dielectric-metal layered structures,” Phys Rev B., vol. 78, 165114 , 2008.
[11] D. Li, L. Qin, D. X. Qi, F. Gao, R. W. Peng, J. Zou, Qian. Jin. Wang and M. Wang, “Tunable electric and magnetic resonances in multilayered metal-dielectric nanoplates at optical frequencies,” J. Phys. D. Appl. Phys., vol. 43, 345102, 2010.
[12] D. R. Smith and S. Schultz “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys Rev B, vol. 65, 195104, 2002.
[13] R. A. Depine and A. Lakhtakia “A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity,” Microw Opt Tech Lett., vol. 41, No. 4, 315-316, 2004.
[14] 李正中,光學薄膜與鍍膜技術,台北:藝軒圖書出版社, 2006,第292頁。
[15] Robbie, K. Sit, J. C. Brett, M. J. “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol.A., vol. 16, No. 3, 1115-1122, 2010.
[16] Y. J. Jen, A. Lakhtakia, C. W. Yu and C. T. Lin, “Vapor-deposited thin films with negative refractive index in the visible regime,” Opt. Express., vol. 17, 7784-7789, 2009.
[17] Y. J. Jen, J. J. Jhou, C. W. Yu and W. H. Wang, “Equivalent permeabilities and permittivities of silver-pillar arrays in the visible regime,” OPT’10., OPT5-O-13, 2010.
論文全文使用權限:同意授權於2013-08-22起公開