現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:沉積傾斜S形奈米柱狀結構薄膜之研究:製鍍與應用 [以論文名稱查詢館藏系統]
論文英文名稱:Deposited slanted S-shaped nano-columnar thin films: fabrication and application [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:電資學院
系所名稱:光電工程系研究所
畢業學年度:100
出版年度:100
中文姓名:林佳鋒
英文姓名:Chia-Feng Lin
研究生學號:96659006
學位類別:博士
語文別:中文
口試日期:2011-07-13
論文頁數:90
指導教授中文名:任貽均
口試委員中文名:蔡定平;游漢輝;李偉;陳學禮;周趙遠鳳;陳建銘
中文關鍵詞:斜向沉積技術雙折射偏極轉換表面電漿波柱狀結構薄膜
英文關鍵詞:glancing angle depositionbirefringencepolarization conversionsurface-plasmon-polariton wavecolumnar thin film
論文中文摘要:本論文研究以斜向沉積技術製鍍傾斜S形奈米柱狀結構薄膜之研製與應用。增量生長模型被建立來預測薄膜在沉積平面生長傾斜S形奈米柱狀結構的形態,將二氧化矽與二氧化鉭的折射率經驗公式代入增量生長模型,四種類型的傾斜S形奈米柱狀結構雙折射薄膜能被設計出來並且製鍍。將傾斜S形奈米柱狀結構薄膜結合棱鏡耦合系統有兩種光學應用被提出,其一是安排傾斜S形奈米柱狀結構二氧化矽薄膜在Krestchmann組態能激發多模態的表面電漿波,另外,若傾斜S形奈米柱狀結構二氧化鉭薄膜配置在光密介質與光疏介質之間能獲得廣角廣波域的反射偏極轉換現象。
論文英文摘要:In this work, slanted S-shaped nano-columnar (SSNC) thin films sculptured by glancing angle deposition technique are investigated. An incremental-growth model is built to predict for deposition of SSNC films with spatially modulated columnar nanostructures in the deposition plane. By incorporating empirical equations for the principal refractive indices of silicon oxide (SiO2) and tantalum oxide (Ta2O5) into the model, four types of SSNC birefringent films are designed and fabricated. Two applications of SSNC films are achieved by arranging the SSNC film in a prism-coupling system. Multiple surface-plasmon-polartion waves are excited by arranging a designated SSNC SiO2 film in the Krestchmann configuration. A designated SSNC Ta2O5 film between a dense incident medium and a rare substrate is demonstrated to have broadband and wide-angle polarization conversion reflection.
論文目次:中文摘要…………………………………………………………………………..i
英文摘要………………………………………………………………………….ii
誌謝..................................................................................................................iii
目錄 ….iv
表目錄……………….......................................................................................vii
圖目錄………………......................................................................................viii
第一章 緒論......................................................................................................1
1.1前言….…………………………………………………………………1
1.2奈米雕刻薄膜………………………………………………………….2
1.2.1 發展背景………..………………………………………………2
1.2.2斜向沉積技術...........................................................................3
1.2.3蒸鍍通量分析與基板運轉技術................................................4
1.2.4奈米柱雕刻薄膜的設計............................................................6
1.2.5週期性奈米光學薄膜................................................................9
1.2.5.1種子層技術.................................................................10
1.2.5.2種子層對奈米結構的改善…......................................13
1.2.5.3種子層用於新穎光學元件的研製……….…..............14
1.2.6奈米雕刻薄膜的光學應用.....................................................15
1.2.6.1表面電漿共振…………………………….…..............15
1.2.6.2偏極分光元件………..……………………….…........17
1.3 S形奈米柱狀結構薄膜……………………………..……………….19
1.4 研究主題…………………….……………………..………………24
第二章 多模態表面電漿波.............................................................................25
2.1前言….………………………………………………………………25
2.2表面電漿波…………………………………………………………25
2.2.1奈米雕刻薄膜用於激發表面電漿波…………......................26
2.2.1.1柱狀結構薄膜…………………………….…..............26
2.2.1.2螺旋結構薄膜…………………………….…..............29
2.3研究動機….…………………………………………………………29
2.4 Krestchmann組態的邊界值問題………….….……………………30
2.4.1 SSNC薄膜的介電特性…..…………………...........................31
2.4.2邊界值問題…..…….……………..…………...........................32
2.4.3解邊界值問題…..…….……………..………...........................33
2.4.3.1 p偏振態……………………..…..……........................33
2.4.3.2 s偏振態……………………..…..……........................35
2.4.4透射、反射與吸收…….……………..………...........................36
2.5 實驗過程與數據……………...…………….….……………………37
2.5.1 二氧化矽經驗關係式………………………..........................37
2.5.2 均向鋁薄膜………….………………………..........................39
2.6 SSNC SiO2薄膜的結構設計.....…………….….……………………39
2.6.1表面電漿共振與波導的區分……......…………….….………41
2.7金屬-介電質雙層薄膜的製鍍與量測……….………………………47
2.8結果與討論……………………………….………………………49
2.8.1模擬與實驗的數據比較……………………………................49
2.8.2 p2模態表面電漿波的誤差分析…..……...……................52
2.8.3 SSNC薄膜的折射率特性對表面電漿波模態的影響.............53
第三章 廣波域廣角偏極轉換器.....................................................................55
3.1前言.................................................................................................55
3.2文獻回顧..........................................................................................56
3.2.1窄帶與寬帶偏極轉換濾波器..................................................56
3.2.2偏極態調制器.........................................................................57
3.2.3近完美偏極態調制器.............................................................58
3.2.4廣波域偏極轉換器.................................................................60
3.3研究動機..........................................................................................61
3.4雙折射光學薄膜理論.......................................................................61
3.4.1空間座標與主軸座標之定義及轉換.......................................61
3.4.2 Fresnel’s方程式………………………………………………63
3.4.3 材料中傳遞的特徵電磁場………………………………….65
3.4.4 薄膜矩陣法………………………………………………….67
3.5傾斜S形奈米柱狀結構薄膜的設計.................................................73
3.5.1傾斜S形奈米柱狀結構薄膜之生長模型建立........................73
3.5.2偏極轉換反射率之數值模擬...................................................74
3.5.2.1固定初始沈積角 =80°,調整振幅A=20°、25°、30°.75
3.5.2.2固定振幅A =20°,調整初始沈積角 =70°、75°、80°.76
3.6實驗製鍍與量測...............................................................................78
3.7結果與討論.......................................................................................79
第四章 結論……………….............................................................................82
參考文獻 .…83
附錄…………………………………………………………………………...…90
論文參考文獻:[1] H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (Adam Hilger, 1986).
[2] K. Robbie, J. C. Sit, and M. J. Brett, "Advanced techniques for glancing angle deposition," J. Vac. Sci. Technol. B 16, 1115-1122 (1998).
[3] D. Vicka, L.J. Friedrich, S.K. Dew, M.J. Brett, K. Robbie, M. Seto, T. Smy, "Self-shadowing and surface diffusion effects in obliquely deposited thin films," Thin Solid Films 339, 88-94 (1999).
[4] A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, Bellingham,WA, 2005).
[5] K. Robbie, M. J. brett, A. Lakhtakia, "First thin film realization of a helicoidal bianisotropic medium," J. Vac.Sci. Technol. A 13, 2991-2993 (1996).
[6] I. Hodgkinson and Qi-hong Wu, "Inorganic Chiral Optical Materials," Adv. Mater. 13,889-897 (2001).
[7] Y.-P. Zhao, S. B. Chaney, and Z.-Y. Zhang, "Absorbance spectra of aligned Ag nanorod arrays prepared by oblique angle deposition," J. Appl. Phys. 100, 063527 (2006).
[8] S. B. Chaney, Z.-Y. Zhang, and Y.-P. Zhao, "Anomalous polarized absorbance spectra of aligned Ag nanorod arrays," Appl. Phys. Lett. 89, 053117 (2006).
[9] Q. Zhou, Y. P. He, J. Abell, Z. J. Zhang, and Y. P. Zhao, "Surface-enhanced Raman scattering from helical silver nanorod arrays," Chem. Comm. 47, 4466-4468 (2011).
[10] Q. Zhou, Y. P. He, J. Abell, Z. J. Zhang, and Y. P. Zhao, "Optical properties and surface enhanced Raman scattering of L-shaped silver nanorod arrays," J. Phys. Chem. C 115, 14131–14140 (2011).
[11] M. Suzuki et. al, "Ag nanorod arrays tailored for surface-enhanced Raman imaging in the near-infrared region," Nanotech. 19, 265304 (2008).
[12] M. Suzuki et. al, "Tailoring coupling of light to local plasmons by using
Ag nanorods/structured dielectric/mirror sandwiches," J. Nanophoton. 3, 031502 (2009).
[13] S. V. Kesapragada and D. Gall, "Two-component nanopillar arrays grown by glancing angle deposition," Thin Solid Films 494, 234 (2006).
[14] S. V. Kesapragada, P. Victor, O. Nalamasu, and D. Gall, "Nanospring pressure sensors grown by glancing angle deposition," Nano Lett. 6, 854 (2006)
[15] C. M. Zhou, H. F. Li, and D. Gall, "Multi-component nanostructure design by atomic shadowing," Thin Solid Films 517, 1214 (2008).
[16] M. M. Hawkeye and M. J. Brett, "Optimized Colorimetric Photonic-Crystal Humidity Sensor Fabricated Using Glancing Angle Deposition," Adv. Mater. 21, 3652-3658 (2011).
[17] M. M. Hawkeye, R. Joseph, J. C. Sit, and M. J. Brett, "Coupled defects in one-dimensional photonic crystal films fabricated with glancing angle deposition," Opt. Express 18, 13220-13226 (2010).
[18] Yi-Jun Jen, Akhlesh Lakhtakia, Ching-Wei Yu, and Chin-Te Lin, "Vapor-deposited thin films with negative real refractive index in the visible regime," Opt. Express 17, 7784-7789 (2009).
[19] Yi-Jun Jen, A. Lakhtakia, Ching-Wei Yu, Chia-Feng Lin, Meng-Jie Lin, Shih-Hao Wang and Jyun-Rong Lai, "Bio-inspired Achromatic Waveplates for Visible Light," Nature Commun. 2, 1-5 (2011).
[20] I. J. Hodgkinson, Q.-h. Wu, and J. Hazel,"Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide," Appl. Opt. 37, 2653-2659 (1998).
[21] R. N. Tait, T. Smy, and M. J. Brett, "Modeling and characterization of columnar growth in evaporated films," Thin Solid Films 226, 196 (1993).
[22] A. Lakhtakia and R Messier, "Sculptured thin films–I. Concepts," Mat. Res. Innovat. 1, 145–148, (1997).
[23] R Messier and A. Lakhtakia, "Sculptured thin films—II. Experiments and applications," Mat. Res. Innovat. 2, 217–222 (1999).
[24] C. Buzea, K. Kaminska, G. Beydaghyan, T. Brown, C. Elliott, C. Dean and K. Robbie, "Thickness and density evaluation for nanostructured thin films by glancing angle deposition," J. Vac. Sci. Technol. B 23, 2545 (2005).
[25] D-X Ye, T. Karabacak, B. K. Lim, G-C Wang and T-M Lu, "Growth of uniformly aligned nanorod arrays by oblique angle deposition with two-phase substrate rotation," Nanotechnology 15, 817–821 (2004).
[26] D-X Ye, Y-P Zhao, G-R Yang, Y-G Zhao, G-C Wang, and T-M Lu, "Manipulating the column tilt angles of nanocolumnar films by glancing angle deposition," Nanotechnology 13, 615–618 (2002).
[27] D-X Ye, T Karabacak, R C Picu, G-C Wang and T-M Lu, "Uniform Si nanostructures grown by oblique angle deposition with substrate swing rotation," Nanotechnology 16, 1717-1723 (2005).
[28] D. A. Gish, M. A. Summers, M. J. Brett, "Morphology of periodic nanostructures for photonic crystals grown by glancing angle deposition," Photonics Nanostruct. 4, 23–29 (2006).
[29] S. R. Kennedya and M. J. Brett, "Advanced techniques for the fabrication of square spiral photonic crystals by glancing angle deposition," J. Vac. Sci. Technol. B 22, 1017-1023 (2004).
[30] I. J. Hodgkinson and Q.-h. Wu, "Serial bideposition of anisotropic thin films with enhanced linear birefringence," Appl. Opt. 38, 3621-3625(1999).
[31] Y-J Jen and C-F Lin, "Anisotropic optical thin films finely sculptured by substrate sweep technology," Opt. Express 16, 5372-5377 (2008).
[32] M. O. Jensen and M. J. Brett, "Porosity engineering in glancing angle deposition thin films," Appl. Phys. A 80, 763–768 (2005).
[33] A. Boltasseva, V. M. Shalaev, "Fabrication of optical negative-index metamaterials: Recent advances and outlook," Metamaterials 2, 1-17 (2008).
[34] M. O. Jensen and M. J. Brett, "Periodically Structured Glancing Angle Deposition Thin Films," IEEE Trans. Nanotechnol. 4, 269-277 (2005).
[35] S. R. Kennedy, Michael J. Brett, O. Toader and Sajeev John, "Fabrication of Tetragonal Square Spiral Photonic Crystals," Nano Lett. 2, 59-62 (2002).
[36] Y-J Jen and Y-H Liao, "Surface plasmon resonance via polarization conversion in a weak anisotropic thin film," Appl. Phys. Lett. 94, 011105 (2009).
[37] I. Abdulhalim, "Surface plasmon TE and TM waves at the anisotropic film–metal interface," J. Opt. A: Pure Appl. Opt. 11, 015002 (2009).
[38] F. Chiadini and A. Lakhtakia, "Design of wideband circular-polarization filters made of chiral sculptured thin films," Microw. Opt. Technol. Lett. 42, 135-138 (2004).
[39] I. J. Hodgkinson, Q-H Wu, M. Arnold, L. D. Silva, G. Beydaghyan, K. Kaminska, and K. Robbie, "Biaxial thin-film coated-plate polarizing beam splitters," Appl. Opt. 45, 1563-1568 (2006).
[41] R. Messier, T. Gehrke, C. Frankel, V. C. Venugopal, W. Otan˜o, and A. Lakhtakia, "Engineered sculptured nematic thin films," J. Vac. Sci. Technol. A 15, 2148-2152 (1997).
[42] A. J. McPhun, Q.H. Wu and I.J. Hodgkinson, "Birefrinngent rugate filters," Electron. Lett. 34, 360-361 (1998).
[43] V. C. Venugopaland A. Lakhtakia, "Dielectric sculptured nematic thin films for rugate-like filters," Opt. Commun. 149, 217–222 (1998).
[44] J. A. Polo Jr. a, A. Lakhtakia, "Sculptured nematic thin films with periodically modulated tilt angle as rugate filters," Opt. Commun. 251, 10–22 (2005).
[45] H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer, New York (1983).
[46] J. A. Polo Jr., A. Lakhtakia, "Morphological effects on surface-plasmon-polariton waves at the planar interface of a metal and a columnar thin film," Opt. Commun. 281, 5453-5457 (2008).
[47] T. G. Mackay, A. Lakhtakia, "Modeling columnar thin films as platforms for surface–plasmonic–polaritonic optical sensing," Photonics Nanostruct. 8, 140-149 (2010).
[48] A. Lakhtakia, "Surface-plasmon wave at the planar interface of a metal film and a structurally chiral medium," Opt. Commun. 279, 291–297 (2007).
[49] G. I. Stegeman, J. D. Valera, C. T. Seaton, J. Sipe, and A. A.Maradudin, "Nonlinear s-polarized surface plasmon polaritons, " Solid State Commun. 52, 293-297(1984).
[50] K. Kim, "Excitation of s-polarized surface electromagnetic waves in inhomogeneous dielectric media," Opt. Express 16, 13354-13363 (2008).
[51] W. Youfa, W. Qi, B. Jiashan, "Nonlinear TE surface waves on an anti-ferromagnetic crystal, " J. Appl. Phys. 84, 6233-6238 (1998).
[52] M. A. Motyka and A. Lakhtakia, "Multiple trains of same-color surface plasmonpolaritons guided by the planar interface of a metal and a sculptured nematic thin film," J. Nanophoton. 2, 021910 (2008).
[53] A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: Experimental evidence,” J. Nanophoton 3, 033506 (2009).
[54] K. D. Harris, D. Vick, T. Smy and M. J. Brett, "Column angle variations in porous chevron thin films," J. Vac. Sci. Technol. A 20, 2062-2067 (2002).
[55] Y.-J. Jen, C.-Y. Peng, and H.-H. Chang, “Optical constant determination of an anisotropic thin film via polarization conversion,” Opt. Express 15, 4445-4451 (2007).
[56] R. Messier, “The nano-world of thin films,” J. Nanophoton. 2, 021995 (2008).
[57] G. J. Sprokel, R. Santo, and J. D. Swalen, “Determination of the surface tilt angle by attenuated total reflection,” Mol. Cryst. Liq. Cryst. 68, 29-38 (1981).
[58] R. A. Depine and M. L. Gigli, “Resonant excitation of surface modes at a single flat uniaxial-metal interface,” J. Opt. Soc. Am. A 14, 510-519 (1997).
[59] Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: A new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J. 73, 2791-2797 (1997).
[60] E. Hecht, Optics, 4th ed. (Addison Wesley, 2001).
[61] Yi-Jun Jen and Cheng-Lung Chiang, "Enhanced polarization conversion for an anisotropic thin film," Opt. Commun. 265, 446-453 (2006).
[62] Y.-J. Jen and C.-Y. Peng, "Narrow-band and broad-band polarization conversion reflection filters," Appl. Phys. Lett. 89, 041128 (2006).
[63] Y.-J. Jen, C.-W. Yu, C.-F. Lin, Y.-H. Liao, and C.-Y. Peng, "Modulation of the polarization state of light using a weak anisotropic thin film," Opt. Lett. 33, 467-469 (2008).
[64] Y.-J. Jen, Y.-H. Chen, C.-W. Yu, and Y.-P. Li, "Near-perfect modulator for polarization state of light", J. Nanophoton. 2, 029504 (2008).
[65] Y.-J. Jen, M.-J. Lin, and W.-P. Tsai, "Three-layered thin film system for broadband polarization conversion reflectance," J. Nanophoton. 5, 051508 (2011).
[66] I. J. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, USA, 1997).
[67] I. J. Hodgkinson, Q.-H. Wu, and A. McPhun, "Incremental-growth model for the deposition of spatially modulated thin film nanostructures," J. Vac. Sci. Technol. B 16, 2811-2816 (1998).
[68] Y-J Jen, C-F Lin, and M-J Lin, "Slanted S-shaped nano-columnar thin films for broadband and wide-angle polarization conversion," Opt. Materials Express 1, 525–534 (2011).
論文全文使用權限:不同意授權