現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:金屬、介電值三維八邊形螺旋結構之製作與吸收特性分析 [以論文名稱查詢館藏系統]
論文英文名稱:Metal-Dielectric Three Dimensional Helical Octagon Structure: Fabrication and Analysis of Absorption Property [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:電資學院
系所名稱:光電工程系研究所
畢業學年度:100
出版年度:101
中文姓名:陳建圻
英文姓名:Chien-Chi Chen
研究生學號:99658054
學位類別:碩士
語文別:中文
口試日期:2012-07-19
論文頁數:56
指導教授中文名:任貽均
指導教授英文名:Yi-Jun Jen
口試委員中文名:藍永強;周趙遠鳳;游竟維
口試委員英文名:Yung-Chiang Lan;Yuan-Fong Chau;Ching-Wei Yu
中文關鍵詞:超穎材料交錯沉積技術八邊形螺旋結構吸收
英文關鍵詞:metamaterialbidepositionhelical octagon structureabsorption
論文中文摘要:近年來由於超穎材料日漸往三維的方向發展,廣波域以及廣角度吸收一直是大家所追求的目標。本篇論文利用電子槍蒸鍍系統搭配斜向角度沉積法與交錯沉積技術製鍍不同尺寸、厚度之介電值混合金屬的三維八邊形奈米結構來達到廣波域以及廣角度吸收。樣品以SEM觀察其表面與截面的結構,可看出其八邊形為一類似螺旋型的結構且金屬的部分表面圖呈現月牙形狀。再藉由對SEM的圖片進行影像處理可以計算出實際結構的厚度。本實驗製鍍了1週期、1.5週期、2週期的二氧化矽混合鋁和二氧化矽混合銀的三維八邊形奈米結構。
光學量測部分,將製鍍完成的各個尺寸的八邊形結構量測p偏振態和s偏振態穿透與反射的可見光光譜,量測角度從0°~75°。從量測的結果得知二氧化矽混合鋁兩週期八邊形結構在可見光波段0°~75°入射的p偏極態與s偏極態吸收平均達9成以上。為了瞭解其吸收特性,利用有限時域差分法套裝軟體定性模擬電場在鋁月牙結構中的共振行為以及利用商業軟體”Wvase 32”凝合二氧化矽混合鋁兩週期八邊形結構的等效折射率。由於本實驗為一類似螺旋狀的結構,文章最後利用橢偏儀量測了橢圓參數並探討其旋光性
論文英文摘要:Due to the development of metamaterials growing to three-dimensional structure, broadband and wide-angle absorption is a goal for every researcher. In this paper, we use the electron beam evaporation with glancing angle deposition and bideposition technology to fabricate dielectric-metal composite three dimensional octagon nanostructure for different size and thickness which can reach the broadband and wide-angle absorption. We use SEM to observe samples’ top view and cross section is similar to helical and the metal part looks like crescent moon. The film’s thickness can be known with the cross section. The 1, 1.5, 2 period SiO2-Al and SiO2-Ag composite three dimensional octagon nanostructure were fabricated.
In the optical measurement, we measured every size of the sample with transmittance and reflectance visible spectrum for p(s) polarization, the incident angle is 0°~75°. The result show that 2 period SiO2-Al octagon helical structure exhibited high absorption of average above 90% at visible light and incident angle 0°~75° for p polarization and s polarization. In addition, we used FDTD to simulate the crescent aluminum’s electric field resonance to realize the samples’ property of absorption and use the commercial software “Wavse32” to fit the effective refractive index of 2 period SiO2-Al octagon helical structure. Finally, the circular property of 2 period SiO2-Al octagon helical was observed by measure the ellipsometric parameters (Ψ and Δ).
論文目次:目 錄

中文摘要...................................................................................................................i
英文摘要…………………………………………………………………...….………ii
誌謝……………………………………………………………………………….…..iii
目錄…………………………………………………………………………...………iv
表目錄…………………………………….…………………………..………...…….vi
圖目錄…………………………………………………………………………..……vii
第一章 前言與文獻回顧 ……….....1
1.1 前言 …..…...1
1.2 文獻回顧 ….……….2
1.2.1 斜相沉積技術與非均向薄膜 …........2
1.2.2三維奈米結構 …........4
1.2.3奈米金屬的吸收特性 …….....7
1.2.4超穎材料吸收器 …….....9
1.3研究動機 …….…12
第二章 原理介紹 ..…...13
2.1 斜相沉積法與交錯沉積技術 ….....13
2.2玻璃基板上之透射、反射與吸收光譜 ……...14
2.3 有限時域差分法 ……...15
2.3.1 吸收邊界 …..….16
2.4 等效介質理論 ..…….16
2.4.1 精確微結構之model ………17
第三章 實驗架構與量測系統 …..….20
3.1 蒸鍍系統 ……...20
3.2 鍍膜機系統介紹 …….21
3.3 製鍍流程 …….23
3.4金屬-介電值三維八邊形螺旋結構之製作 …….25
3.5透射式與反射式光譜量測系統 …….26
3.6橢圓偏光儀量測系統 …….28
第四章 實驗結果 …….29
4.1二氧化矽-銀八邊型螺旋結構 …….29
4.2二氧化矽-鋁八邊型螺旋結構 …….32
4.2.1二氧化矽-鋁八邊型螺旋結構-1.5週期 …….35
4.2.2二氧化矽-鋁八邊型螺旋結構-2週期 …….37
4.3三維八邊形螺旋結構廣角度吸收 …….40
4.4等效介質理論分析 …….45
4.5旋光性量測 …….49
4.6有限時域差分法模擬 …….50
第五章 結論 …….53
參考文獻 …….54










表目錄

表4. 1 二氧化矽混合鋁之等效折射率.................................................................45
表4.2 各層等效折射率…...….............………………………………...........…......46
表4.3二氧化矽-鋁八邊型螺旋結構等效折射率….......…....................................48
表4.4各個波長左旋光和右旋光入射鋁整個體積內偵測到的電場強度平方總合…...............................................….....….........…................................................52


















圖目錄

圖1.1 斜向沈積技術製鍍斜柱薄膜示意圖…...........................................................3
圖1.2 遮蔽效應示意圖....……………..…….............................................................3
圖1.3 斜向沉積薄膜柱狀示意圖……………...……………………….......................3
圖1.4 利用斜向角度沉積製鍍的螺旋結構...............................................................4
圖1.5 三維金四邊形奈米結構(a)模擬圖形(b)模擬之介電係數................................5
圖1.6金螺旋結構(a)製作過程(b)左旋光與右旋光的穿透光譜..............................6
圖1.7 Si-Ta垂直堆疊、Z字型、棋盤狀等混合結構.....................................................6
圖1.8不同厚度奈米銀陣列薄膜吸收光譜(a)s光入射(b)p光入射…..........................8
圖1.9針狀、週期結構、L型、Y型等銀奈米結構………...……...................................8
圖1.10 (a)二十一層之魚網狀結構示意圖;(b)量測與模擬魚網狀結構折射率...........8
圖1.11開口環結構的反射與穿透光譜.......................................................................9
圖1.12 Ag-Al2O3(a)p偏極光透射、反射光譜與(b)s偏極光透射、反射、光譜…...10
圖1.13網狀金屬與介電質混合結構(a)0°和45°吸收光譜(b)隨角度吸收光………..11
圖2.1 交錯沉積示意圖……………………………………………………………...13
圖2.2 座標與偏振光方向定義示意圖....…….........................................................14
圖2.3 柱狀的微結構 model....................................................................................17
圖2.4 平板的微結構model....................................................................................18
圖2.5 粒狀結構,內含材料1.……………………………………...............................18
圖2.6 粒狀結構,內含材料2....……....................................................................19
圖3.1 鍍膜系統內部架構示意圖....……...............................................................21
圖3.2 真空抽氣系統與冷卻系統示意圖....……....................................................23
圖3.3 透射式光譜量測系統....………….................................................................27
圖3.4 反射式光譜量測系統....……........................................................................27
圖3.5 橢偏儀量測系統示意圖....…….....................................................................28
圖4.1 八邊型螺旋結構之示意圖....……...............................................................29
圖4.2 厚度533nm之一週期二氧化矽-銀八邊型(a)SEM截面圖(b)SEM俯視…..30
圖4.3 厚度533nm之一週期二氧化矽-銀八邊型(a)玻璃基板p、s偏振光之R、T、A光譜圖(b) 玻璃基板之p、s偏振光反射光譜......................................................30
圖4.4 厚度1150nm之2週期二氧化矽-銀八邊型(a)SEM截面圖(b)SEM俯視圖(c)玻璃基板之p、s反射透射吸收光譜圖(d)玻璃基板之p、s反射光譜圖..................31
圖4.5 厚度1150nm之2週期二氧化矽-銀八邊型(a) a-silicon wafer 之p、s反射(b) a-silicon wafer 之 p、s吸收光譜………………………………………………..32
圖4.6 厚度705nm之一週期二氧化矽-鋁八邊型(a)SEM截面圖(b)SEM俯視圖(c)玻璃基板之p、s反射透射吸收光譜圖(d)玻璃基板p、s反射光譜圖……………...33
圖4.7 厚度550nm之一週期二氧化矽-鋁八邊型(a)SEM截面圖(b)SEM俯視圖(c) 玻璃基板之p、s反射透射吸收光譜圖(d)玻璃基板之p、s反射光譜圖..................34
圖4.8 厚度266nm欲製鍍之鋁螺旋型結構SEM圖...............................................35
圖4.9 厚度760nm之1.5週期二氧化矽-鋁八邊型(a)SEM截面圖(b)SEM俯視圖(c) 玻璃基板之p、s反射透射吸收光譜圖(d)玻璃基板p、s反射光譜圖................36
圖4.10 厚度760nm之1.5週期二氧化矽-鋁八邊型(a)a-silicon wafer 之p、s反射光譜(b) a-silicon wafer 之 p、s吸收光譜...........................................................36
圖4.11 厚度1156nm之2週期二氧化矽-鋁八邊型(a)SEM截面圖(b)SEM俯視圖(c) 玻璃基板之p、s反射透射吸收光譜圖(d)玻璃基板p、s反射光譜圖................37
圖4.12厚度1080nm之2週期二氧化矽-鋁八邊型(a)SEM截面圖(b)SEM俯視圖(c) 玻璃基板之p、s反射透射吸收光譜圖(d)玻璃基板p、s反射光譜圖(e) a-silicon wafer 之p、s反射(f) a-silicon wafer 之 p、s吸收光譜…………………….……...39
圖4.13 厚度760nm之1.5週期二氧化矽-鋁八邊型結構在玻璃基板上隨角度與波長3D吸收圖 (a)AP (b)AS.................................................................................41
圖4.14 厚度760nm之1.5週期二氧化矽-鋁八邊型結構在a-silicon wafer上隨角度與波長3D吸收圖(a)AP (b)AS............................................................................42
圖4.15 厚度1080nm之2週期二氧化矽-鋁八邊型結構在玻璃基板上隨角度與波長3D吸收圖 (a)AP (b)AS...................................................................................43
圖4.16 厚度1080nm之2週期二氧化矽-鋁八邊型結構在a-silicon wafer上隨角度與波長3D吸收圖(a)AP (b)AS............................................................................44
圖4.17 將圖4.12(a)等效成五層斜柱.....................................................................46
圖4.18 EMA計算之等效折射率的(a)穿透、反射、吸收(b)穿透光譜圖.................46
圖4.19 以套裝軟體”Wvase32”對(a)穿透光譜(b)反射光譜fitting折射率.............47
圖4.20 EMA計算、光譜Fitting、實驗量測之隨波長與角度3D吸收圖..................48
圖4.21 橢偏儀量測二氧化矽-鋁八邊型螺旋結構之橢圓角Ψ與相位Δ..............49
圖4.22 八邊型二氧化矽-鋁結構只製鍍(a)一邊(b)兩邊之截面圖........................50
圖4.23 八邊型二氧化矽-鋁結構只製鍍兩邊之表面圖........................................51
圖4.24 鋁月牙狀模擬示意圖(a)截面圖(b)俯視圖................................................51
圖4.25 FDTD模擬入射波長為400nm時的電場共振情形.................................52
論文參考文獻:參考文獻

[1] Lakhtakia and R. Messier,”Sculptured thin films – I. Concepts,” Mater. Res. Innov., vol., pp. 145-148, 1997.
[2] R.Abdeddaim, “Negative permittivity and permeability of gold square nanospirals,” Appl. Phys. Lett. Vol. 94, pp.081907, (2009).
[3] Y.-P.Zhao, “Absorbance spectra of aligned Ag nanorod arrays prepared by oblique,” J. Appl. Phys. 100(6), pp.063527, (2006).
[4] N.I.Landy, “Perfect metamaterial absorber,” Phys Rev Lett. PRL 100, pp.207402, (2008).
[5] V.G.Kravets, “Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Physical Review B Vol.81, pp.165401, (2010).
[6] Koray Aydin, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nature Communications 2 Vol.517 ,pp.1528, (2011).
[7] K. Robbie and M.J.Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A, vol. 15, pp. 1460-1465, (1997).
[8] N.O.Young and J.Kowal, “Optically active fluorite films,” Nature, vol.183, pp.104-105, (1959).
[9] T.Motohiro and Y.Taga, “Thin film retardation plate by oblique deposition,” Appl. Opt. Vol.28, pp.2466-2482, (1989).
[10] R.M.A Azzam , “Chiral thin solid films: Method of deposition and applications,” Appl. Phys. Lett. Vol.61, pp.3118-3120, (1992).
[11] I.Hodgkinson and Q. H. Wu and A.Mcphun, “Incremental-growth model for the deposition of spatially modulated thin film nanostructures,” J. Vac Sci Technol. B, vol.16, pp. 2811-2816 ,(1989).
[12] K.Robbie, M. J. Brett and A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac Sci Technol. A, vol.13, pp. 2991-2993 ,(1995).
[13] I.Hodgkinson and Q. H. Wu, “Serial bideposition of anisotropic thin films with enhance linear birefrigence,” Appl. Opt. Vol. 38, pp. 3621-3625, (1999).
[14] R. Messier, V. C. Venugopal and P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol A vol. 18, pp. 1538-1545, (2000).
[15] Ming Li, Steve K Dew and M J Brett,” Effects of electron distribution functions on the floating potential of particles in the plasma: thin plasma sheaths”, J. Phys. D: Appl. Phys. 32 2056–2059 (1999).
[16] B.Gallas, “Silver square nanospirals mimic optical properties of U-shaped metamaterials,” Optics Express Vol. 18, No. 16, pp.16335, (2010).
[17] C.M.Zhou, “Multi-component nanostructure design by atomic shadowing,” Thin Solid Films. 517, pp.1214-1218, (2008).
[18] Y.-P.Zhao, “Extinction spectra and electrical field enhancement of Ag nanorods with different topologic shapes,” J. Appl. Phys. 102, pp.113308, (2007).
[19] Zu-Po Yang, “Experimental observation of an extremely dark material made by a low-density nanotube arry,” Nano Letters Vol.8, pp.446-451, (2007).
[20] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. AP-14, pp. 302-307, (1966).
[21] J. C. M. Garnett, “Colours in metal glasses, in metallic films, and in Metallic Solutions,” Philos. Trans. R. Soc. London 203, 385 (1904); ibid 205, 237 (1906).
[22] D. A. G. Bruggeman, “Calculations of various physical constants of heterogeneous substance:part I, dielectric constants and conductivity of isotropic substance,” Ann. Phys. (Leipzig) 24, 636 (1935).
[23] D. J. Bergman, “The dielectric constant of a composite material--A problem in classical physics ,”Physics Reports, 43 37, (1978).
[24] B. Sareni, L. Krähenbühl, and A. Beroual. J., “Effective dielectric constant of periodic composite materials,” Appl. Phys. Vol.80 (3), pp.1688 (1996).
[25] Justyna K. Gansel, “Gold Helix Photonic Metamaterial as Broadband Circular Plarizer,” Science Vol.325, pp.1513-1515, (2009).
[26] Francesco Chiadini and Akhlesh Lakhtakia “Design of wideband circular polarization filters made of chiral sculptured thin films,” Microwave and Optical Technology Letter Vol.42, pp.135-138, (2004).
論文全文使用權限:不同意授權