現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:鋁-二氧化矽-鋁奈米三明治薄膜之雙異向性量測 [以論文名稱查詢館藏系統]
論文英文名稱:Bianisotropic Measurement for Al-SiO2-Al Nanosandwich Film [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:電資學院
系所名稱:光電工程系研究所
畢業學年度:100
出版年度:101
中文姓名:廖宏昇
英文姓名:Hung-Sheng Liao
研究生學號:99658047
學位類別:碩士
語文別:中文
口試日期:2012-07-27
論文頁數:75
指導教授中文名:任貽均
指導教授英文名:Yi-Jun Jen
口試委員中文名:蔡定平;嚴大任;周趙遠鳳
口試委員英文名:Din-Ping Tsai;Ta-Jen Yen;Yuan-Fong Chau
中文關鍵詞:超穎材料負折射率雙異向性
英文關鍵詞:metamaterialnegative refractive indexbianisotropic
論文中文摘要:本研究利用電子束蒸鍍系統與斜向角度沉積技術(GLAD),並搭配旋轉基板方位角,製鍍鋁-二氧化矽-鋁奈米三明治陣列薄膜(SWF),並且固定二氧化矽層之厚度為45nm,對稱增加上、下鋁層之厚度,製作出五個厚度不同的樣品,分析並討論隨著鋁層厚度增加之光學改變,在此也考慮此結構的雙異向性修正,並比較在不同薄膜厚度與直徑尺寸分佈之光學特性。
在量測架構上,利用分離式(Walk-off)干涉儀與偏極式(Polarization)干涉儀,量測薄膜在可見光波段下之正面與反面透射係數與反射係數,並計算其正面與反面之等效折射率、相對本質阻抗、相對介電係數、相對導磁係數與雙異向性參數。在模擬部分,使用有限時域差分法(FDTD),模擬各樣品之直徑對於可見光波長下之電磁共振情形,並且經由光線追跡(Ray tracing),研究光線在薄膜內之干涉行為,其結果驗證在全可見光譜範圍內,具有低反射率、負折射率以及雙異向性。
論文英文摘要:In this work, the aluminum (Al) / silicon-dioxide (SiO2) / aluminum (Al) nanosandwich films are deposited using glancing angle deposition technique with continuous azimuthal rotation during electron beam evaporation.
In the measurement, the transmission and the reflection coefficients of nanosandwich films for p and s-polarization are measured by walk-off and polarization interferometers. Accordingly, the equivalent electromagnetic parameters of each film are derived from the two coefficients. The measured results indicate that films exhibit bianisotropic and negative refractive indices at optical frequencies.
Furthermore, we analyze the bianisotropic parameter and optical properties caused by the variation of the different thicknesses of layers and the distribution of nanosandwich sizes. It is demonstrated that the properties of bianisotropic in negative index metamaterials at optical frequencies.
論文目次:目 錄

中文摘要....................................................................................................................i
英文摘要...................................................................................................................ii
誌謝...............................................................................................…………………iii
目錄...............................................................................................…………………iv
表目錄 …….vi
圖目錄...............................................................................................…………...…vii
第一章 緒論與文獻回顧 …...1
1.1 前言 …...1
1.2負折射率超穎材料 …...2
1.3金屬-介質堆疊之負折射率材料 …...6
1.4雙異向性超穎材料 ….10
第二章 原理與介紹 ….13
2.1等效光學常數 ….13
2.1.1等效折射率與相對本質阻抗 ….13
2.2 雙異向性參數 ….15
2.3透射係數與反射係數 ….17
2.3.1透射之絕對相位 ….17
2.3.2反射之絕對相位 ….19
2.4光線追跡分析 ….22
2.5有限時域差分法 ….24
2.5.1吸收邊界 ….25
第三章 實驗架構與量測系統 ….26
3.1鍍膜系統 ….26
3.2實驗流程 ….29
3.3鋁-二氧化矽-鋁之奈米三明治陣列薄膜的製鍍 ….31
3.3.1實驗參數 ….31
3.4透射光譜量測系統 ….32
3.5偏極與分離式干涉儀量測系統 ….33
3.5.1偏極式干涉儀 ….33
3.5.2分離式干涉儀 ….34
3.5.3誤差來源 ….36
第四章 實驗結果討論與分析 ….37
4.1鋁-二氧化矽-鋁三明治陣列薄膜的結構與參數 ….37
4.1.1奈米三明治陣列薄膜的製鍍結果 ….37
4.1.2奈米三明治陣列薄膜之等效直徑分佈 ….40
4.1.3奈米三明治陣列薄膜之厚度、直徑對照表 ….43
4.2透射與反射光譜 ….44
4.3等效光學常數 ….47
4.3.1等效折射率與本質阻抗 ….47
4.3.2品質因數(FOM)與透射率(T) ….54
4.3.3光線追跡圖 ….57
4.3.4相對導磁係數與相對介電係數 ….59
4.3.5雙異向性參數 ….64
4.4鋁-二氧化矽-鋁奈米三明治陣列薄膜磁場共振效應 ….65
第五章 結論 ….71
參考文獻 ….72
論文參考文獻:[1] K. Robbie, J. C. Sit and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B, vol. 16, 1115-122, 1998.
[2] Herma van Kranenburg and Cock Lodder, “Tailoring growth and local composition by oblique-incidence deposition: a review and new experimental data,” Materials Science and Engineerin, Rll, 295-354, 1994.
[3] V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. vol. 10, pp. 509–514, 1968.
[4] S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-Infrared negative-Index metamaterials,” Phys Rev Lett., vol. 95, 137404, 2005.
[5] C. M. Soukoulis, “Low-loss negative-index metamaterial attelecommunication wavelengths,” Opt Lett., vol. 31, No. 12, 2006.
[6] C. E. Kriegler, M. S. Rill, S. Linden, and M. Wegener,“Bianisotropic photonic metamaterials, ” IEEE J. Sel. Top. Quantum Electron. 16, 367,2010.
[7] A. V. Kildishev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and V. M. Shalaev, “Negative refractive index in optics of metal–dielectric composites,” J. Opt. Soc. Am. B., vol. 23, No. 3, 423-433, 2006.
[8] Dennis M. Sullivan, “Electromagnetic Simulation Using the FDTD Method,” pp. 50-60, 2000.
[9] J. B. Pendry, A. J. Holden, W. J. Stewart,and I. Youngs,“Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett. vol. 76, 4773–4776, 1996.
[10] J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microw. Theory Tech. vol. 47, No. 11, pp. 2075–2084, 1999.
[11] R. A. Shelby, D. R. Smith, S. Schultz, “Experimental VeriTcation of a Negative Index of Refraction,” Science, vol. 292, pp. 77–79, 2001.


[12] V. A. Podoloskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes and negative refraction in metal nanowire composites,” Opt. Express 11, 735–745, 2003.
[13] G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, S. Linden, “Simultaneous Negative Phaseand Group Velocity of Lightin a Metamaterial,” Science, vol. 312, No. 5775 pp. 892-894, 2006.
[14] U. K. Chettiar, A. V. Kildishev, H. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, “ Double Negative Index Metamaterial: Simultaneous Negative Permeability and Permittivity at 812 nm,” Photonic Metamaterials: From Random to Periodic, OSA Technical Digest (CD) (Optical Society of America, 2007), paper MA3.
[15] J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature, vol. 455, 376-379, 2008.
[16] S. Xiao, U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev Optics Letters, Vol. 34, Issue 22, pp. 3478-3480 (2009)
[17] Y. J. Jen, C. H. Chen, and C. W. Yu, “Deposited metamaterial thin film withnegative refractive indexand permeability in the visible regime,” Opt. Lett., vol. 36, No. 6, 2011.
[18] V. M. Shalave, W. Cai, U. K. Chettial, “Negative index of refraction in optical metamaterial,” Opt. Lett., vol. 30, pp. 3356-3358, 2005.
[19] Y. Jeyaram, S. K. Jha, M. Agio, J. F. Loffler, and Y. Ekinci, “Magnetic metamaterials in the blue range using aluminum nanostructures,” Opt Lett., vol. 35, No. 10, 2010.
[20] J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw Theory Tech., vol. 47, no. 11, pp. 2075–2084, 1999.

[21] D. Smith,W. Padilla, D. Vier, S. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett., vol. 84, no. 18, pp. 4184–4187, 2000.
[22] R. Shelby, D. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science, vol. 292, pp. 77–79, 2001.
[23] C.G. Parazzoli, R. B. Greegor,K. Li, B. E. C.Koltenbah, andM. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett., vol. 90, no. 10, pp. 107401-1–107401-4, 2003.
[24] J. D. Baena, R. Marqu’es, F. Medina, and J. Martel, “Artificial magnetic metamaterial design by using spiral resonators,” Phys. Rev. B, vol. 69, no. 1, pp. 014402-1–014402-5, 2004.
[25] T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science, vol. 303, no. 5663, pp. 1494–1496, 2004.
[26] S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science, vol. 306, pp. 1351–1353, 2004.
[27] W. Xu, L.W. Li, H. Y. Yao, T. S. Yeo, and Q.Wu, “Extraction of constitutive relation tensor parameters of SRR structures using transmission line theory,” J. Electromagn. Waves Appl., vol. 20, no. 1, pp. 13–25, 2006.
[28] C. Garcia-Meca, J. Hurtado, J. Marti, A. Martinez, W. Dickson and A. V. Zayats, “Low-Loss Multilayered Metamaterial Exhibiting a Negative Index of Refraction at VisibleWavelengths, ” Phys. Rev. Lett., vol. 106, 067402, 2011.
[29] Y. J. Jen, A. Lakhtakia, C. W. Yu, J. J. Jhou, W.H. Wang, M. J. Lin, H. M. Wu and H. S. Liao, “Silver/silicon dioxide/silver sandwich films in the blus-to-red spectral regime with negative-real refractive index,” Appl. Phys. Lett. 99, 181117,2011.
[30] D. R. Smith, S. Schultz, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B, vol. 65. 195104, pp. 1-5, 2002.
[31] A. A. Govyadinov, V. A. Podolskiy, and M. A. Noginov, “Active metamaterials: Sign of refractive index and gain-assisted dispersion management,” Appl. Phys. Lett. vol. 91, 191103, 2007.
[32] R. A. Depine and A. Lakhtakia “A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity,” Microw Opt Tech Lett., vol. 41, No. 4, 315-316, 2004.
[33] K. Busch, G. von Freymann, S. Linden, S. Mingalaeev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep., vol. 444, no. 1, pp. 101–202, 2007.
[34] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. AP-14, pp. 302-307, 1966.
[35] J.P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. vol. 114, pp. 185-200, 1994.
[36] 李正中,光學薄膜與鍍膜技術,台北:藝軒圖書出版社, 2006,第292頁。
論文全文使用權限:不同意授權