現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:鋁奈米直柱陣列薄膜在不同厚度下之吸收特性研究 [以論文名稱查詢館藏系統]
論文英文名稱:Thickness-Dependent Absorption Properties of Aluminum Nanorod Arrays [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:電資學院
系所名稱:光電工程系研究所
畢業學年度:100
出版年度:101
中文姓名:吳凰銘
英文姓名:Huang-Ming Wu
研究生學號:99658043
學位類別:碩士
語文別:中文
口試日期:2012-07-17
論文頁數:65
指導教授中文名:任貽均
指導教授英文名:Yi-Jun Jen
口試委員中文名:李偉;陳學禮;吳俊傑;蔡淑雲
口試委員英文名:Wei Li;Hsuen-Li Chen;Jin-Jei Wu;Shwu-Yun Tsay
中文關鍵詞:鋁奈米直柱陣列鋁不連續膜阻抗匹配吸收器
英文關鍵詞:aluminum nanorod arraysemicontinuous aluminum filmsimpedance-matchingabsorber
論文中文摘要:本研究利用斜向沉積技術搭配基板方位角旋轉,製鍍各種不同厚度之鋁奈米直柱陣列。在量測上,我們量測鋁奈米直柱薄膜5°至60°隨角度吸收光譜圖,並比較各尺寸薄膜之間之吸收效果,同時,我們藉由干涉儀系統量測厚度500nm鋁奈米直柱薄膜的折射率、阻抗、導磁係數、介電係數與Bianstropic因子。量測結果發現,鋁直柱可以吸收入射波,且在膜與空氣間有很好的阻抗匹配和能量消耗特性,並使玻璃基板變暗。而光譜圖也顯示,隨著鋁直柱厚度增加,其吸收也隨之增加。另一方面,為了增加吸收效果,我們在玻璃基板上製鍍一層鋁不連續膜,再將不同尺寸之鋁奈米直柱製鍍在鋁不連續膜上,在同個厚度中,此結構薄膜吸收率比純鋁直柱提高了25%。由此概念,在縮小厚度情形下,製鍍出一個無關偏振態、廣波域與廣角度的吸收器。
論文英文摘要:Aluminum nanorod array with different thickness were grown on the glass by oblique angle deposition technique. In the measurement, we measure each films absorption of spectrum with different angle from 5° to 60° in visible regime. The bianistropic factor, equivalent refraction index and equivalent impedance of the aluminum nanorod films are measured for p-polarization and s-polarization by walk-off and polarization interferometers. The measured results indicate that aluminum nanorod array presents good impedance-matching condition between the film and air and its energy dissipation property darkens the surface of glass. It is demonstrated that such a film could absorb the incident wave efficiently. From the spectrum, the absorption will increase as the thickness of aluminum nanorod array raises. On the other hand, the semicontinuous aluminum films with different size were deposited on the glass as bottom layer. Thereafter, the aluminum nanorod array were coated on the semicontinuous aluminum films to enhance absorption. This structure increases absorption about 25% than pure aluminum nanorod array in the same thickness. For this conception, we fabricated polarization independence, broadband and wide angle thin films as perfect absorber.
論文目次:中文摘要....................................................................................................................i
英文摘要………………………………………………………………………………ii
目錄…………………………………………………………………………………...iii
表目錄………………………………………………………………………………….v
圖目錄…………………………………………………………………………….…vi
第一章 緒論與文獻回顧 ............................................................................... …...1
1.1 前言 ................................................................................................. …...1
1.2 斜向沉積技術與非均向薄膜 ......................................................... ….…2
1.3 奈米金屬之吸收特性....................................................................... …...3
1.4 抗反射技術 ...................................................................................... ….4
1.5 超穎材料吸收器 .............................................................................. ….6
1.6 不連續金屬膜 .................................................................................. ….10
1.7 研究動機 .......................................................................................... ….11
第二章 原理介紹 ................................................................................... ….12
2.1 抗反射原理 ...................................................................................... ….12
2.2 吸收、厚度與消光係數模擬............................................................. ….14
2.3等效光學常數與異相性因子修正 ...................................................... ….15
2.4光線追跡分析 .................................................................................... ….17
第三章 實驗架構與量測系統 ........................................................................ ….19
3.1 鍍膜系統 .......................................................................................... ….19
3.2 製鍍步驟 .......................................................................................... ….21
3.3 薄膜製鍍方式 .................................................................................. ….22
3.3.1 鋁奈米直柱陣列結構製鍍方式 .............................................. ….22
3.3.2 鋁不連續膜結構製鍍方式 ...................................................... ….23
3.4光譜量測系統 ................................................................................... ….23
3.5 walk-off干涉儀量測系統 ................................................................. ….25
v
3.5.1 雷射光源 ................................................................................. ….25
3.5.2 穿透式干涉儀 .......................................................................... ….25
第四章 實驗量測結果與分析 ........................................................................ ….27
4.1 薄膜結構與製鍍參數 ....................................................................... ….27
4.1.1 鋁奈米直柱陣列結構薄膜 ...................................................... ….27
4.1.2 鋁不連續薄膜 ......................................................................... ….29
4.1.3 鋁不連續薄膜上堆疊鋁奈米直柱陣列薄膜............................ ….30
4.2 薄膜之不同等效直徑尺寸分布 ....................................................... ….31
4.2.1 鋁奈米直柱陣列結構之不同等效直徑尺寸分布 .................... ….31
4.2.2 鋁不連續薄膜之不同等效直徑尺寸分布 ............................... ….33
4.2.3 不同等效直徑尺寸分布表格對照表 ....................................... ….35
4.3 鋁奈米直柱陣列薄膜之光譜測量 .................................................... ….36
4.4 鋁奈米直柱陣列薄膜之等效光學常數 ............................................ ….40
4.4.1 等效折射率與相對本質阻抗 .................................................. ….40
4.4.2 品質因數(FOM) ...................................................................... ….43
4.4.3 相對介電常數、相對導磁係數與異相性因子 .......................... ….43
4.4.4 光線追跡圖 .............................................................................. ….46
4.5 鋁不連續薄膜之光譜量測 ................................................................ ….50
4.5.1 不同厚度之鋁不連續薄膜光譜圖 ............................................. ….50
4.5.2 在鋁不連續薄膜上製鍍鋁奈米直柱陣列薄膜之光譜圖 ........... ….51
4.6 隨角度光譜量測 .............................................................................. ….52
4.6.1 鋁奈米直柱陣列薄膜在玻璃基板上隨角度光譜量測 ............... ….52
4.6.2 鋁奈米直柱陣列薄膜在非晶矽晶圓上隨角度光譜量測 ........... ….55
4.6.3 在鋁不連續薄膜上製鍍鋁奈米直柱之隨角度光譜量測 .......... ….56
4.7 分析與討論 ...................................................................................... ….58
第五章 結論 ................................................................................................... ….62
參考文獻 ........................................................................................................... ….63
論文參考文獻:[1]K. Robbie, M. J. Brett, and Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,”J.Vac. Sci. Technol., vol. 13, pp. 2991-2993(1995).
[2]Lakhtakia and R. Messier, “Sculptured thin films - I . Concepts,” Mater. Res. Innov., vol. 1, pp. 145-148 (1997).
[3]B. Gallas, K. Robbie, R. Abdeddaim, G. Guida, J. Yang, J. Rivory, and A. Priou, “Silver square nanospirals mimic optical properties of U-shaped metamaterials,” Opt. Express 18, 16335 (2010).
[4]Y.-J. Jen, Chia-Feng Lin, and Meng-Jie Lin, “Slanted S-shaped nano-columnar thin films for broadband and wide-angle polarization conversion,” Opt. Mater. Express 1, 525-534 (2011).
[5]B. Gallas, K. Robbie, R. Abdeddaïm, G. Guida, J. Yang, J. Rivory, and A. Priou, “Silver square nanospirals mimic optical properties of u-shaped metamaterials,” Opt. Express 18, 16335–16344 (2010).
[6]R. A. Shelby, D. R. Smith, & S. Schultz, “Experimental verification of a negative index of refraction,” Science, vol. 292, pp. 77–79, (2001).
[7]D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser & S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. vol. 84, No. 18, pp. 4184–4187, (2000).
[8]J. B. Pendry, A. J. Holden, D. J. Robbins & W. J. Stewart, “Magnetism from onductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microw. Theory ech. vol. 47, No. 11, pp. 2075–2084, (1999).
[9]J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. vol. 85, pp.3966-3969, (2000).
[10]Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009).
[11]N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[12]N. I. Landy, S. Sajuyigbe, J. J. Mork, D. R. Smith, and W. J. Padilla, “Perfect Metamaterail Absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[13]V. G. Kravets, S. Neubeck, and A. N. Grigorenko, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in a dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[14]K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun.2, 517 (2011).
[15]U.K Chettiar, P. Nyga, M. D. Thoreson, A. V. Kidishev, V. P. Drachev, V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Applied physics B:Lasers and Optics, pp. 1-10 (2010).
[16]李正中,光學薄膜與鍍膜技術,台北:藝軒圖書出版社, 2006。
[17]R. Messier, V. C. Venugopal and P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol A vol. 18, pp. 1538-1545, (2000).
[18]Ming Li, Steve K Dew and M J Brett,” Effects of electron distribution functions on the floating potential of particles in the plasma: thin plasma sheaths”, J. Phys. D: Appl. Phys. 32 2056–2059 (1999).
[19]T. Motohiro and Y. Taga, “Thin film retardation plate by oblique deposition,” Applied Optics, vol. 28, No. 13, (1989).
[20]I.Hodgkinson and Q. H. Wu, “Serial bideposition of anisotropic thin films with enhance linear birefrigence,” Appl. Opt. Vol. 38, pp. 3621-3625, (1999).
[21]Y. Takeda, N. Takeuchib, T. Fukano, T. Motohiro, “Obliquely deposited metal films for polarizers,” Appl. Surf. Sci., vol. 244, pp. 209-212, (2005).
[22]Y.-J. Jen, A. Lakhtakia, C.-W. Yu, and C. T. Lin, “Vapor-deposited thin films with negative real refractive index in the visible regime,” Opt. Express 17(10), 7784–7789 (2009).
[23]Y.-P.Zhao, “Absorbance spectra of aligned Ag nanorod arrays prepared by oblique,” J. Appl. Phys. 100(6), pp.063527, (2006).
[24]Y.-P.Zhao, “Extinction spectra and electrical field enhancement of Ag nanorods with different topologic shapes,” J. Appl. Phys. 102, pp.113308, (2007).
[25]Dobrowolski, J. A., Poitras, D., Ma, P., Vakil, H., and Acree, M., “Towards perfect antireflection coatings: numerical investigations,” Appl. Opt. 41, 3075-3083 (2002).
[26]Yi-Fan Huang, Surojit Chattopadhyay, Yi-Jun Jen, Cheng-Yu Peng, Tze-An Liu, Yu-Kuei Hsu, Ci-Ling Pan, Hung-Chun Lo, Chih-Hsun Hsu, Yuan-Huei Chang, Chih-Shan Lee, Kuei-Hsien Chen and Li-Chyong Chen, “Improved broadband and quasiomnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology 2, 770 (2007).
[27]Xi, J.-Q., Schubert, M.F., Kim, J.K., Schubert, E.F., Chen, M., Lin, S.-Y., Liu, W., Smart, J.A. “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nature Photonics 1 (3) , pp. 176-179 (2007).
[28]Zu-Po Yang, Lijie Ci, James A. Bur, Shawn-Yu Lin, and Pulickel M. Ajayan “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Letters 8 (2) , pp. 446-451 (2008).
[29]V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. vol. 10, pp. 509–514, (1968).
[30]R. F. Bunsha, “Deposition technologies for films and coatings,,” Noyes Publications, Park Ridge, New Jersey, U.S.A. (1982).
[31]J. Venables, “Nucleation and Growth of Thin films,,” Rep. Prog. Phys., 47 399 (1984).
[32]D. R. Smith, S. Schultz, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B, vol. 65. 195104, pp. 1-5, (2002).
[33]C. E ´ . Kriegler, M. S. Rill, S. Linden, and M. Wegener, “Bianisotropic Photonic Metamaterials,” IEEE J. Sel. Top. Quantum Electron. 16, 367 (2010).
[34]K. Busch, G. von Freymann, S. Linden, S. Mingalaeev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep., vol. 444, no. 1, pp. 101–202, (2007).
論文全文使用權限:不同意授權