現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:利用斜向沉積技術製鍍奈米銀直柱陣列應用於表面增強拉曼光譜 [以論文名稱查詢館藏系統]
論文英文名稱:Using glancing angle deposition technique to fabricate silver-pillar arrays for Surface-enhanced Raman Scattering (SERS) spectra [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:電資學院
系所名稱:光電工程系研究所
畢業學年度:100
出版年度:101
中文姓名:王永祥
英文姓名:Yung-Hsiang Wang
研究生學號:99658002
學位類別:碩士
語文別:中文
口試日期:2012-07-27
論文頁數:76
指導教授中文名:任貽均
指導教授英文名:Yi-Jun Jen
口試委員中文名:中西洋一郎;蔡定平;嚴大任;周趙遠鳳
口試委員英文名:Yoichiro Nakanishi;Din-Ping Tsai;Ta-Jen Yen;Yuan-Fong Chau
中文關鍵詞:表面增強拉曼散射斜向沉積技術銀奈米直柱陣列
英文關鍵詞:surface-enhanced Raman scatteringSERSPVDsilver-pillar
論文中文摘要:近年來,表面增強拉散射技術應用於化學物與生物分子之檢測,而表面增強拉曼散射可藉由控制奈米結構的大小與形狀進行改善。因此,本研究利用斜向沉積技術,在蒸鍍過程中以基板的法線為軸重複旋轉,同時鍍在玻璃基板與矽晶圓上形成奈米銀直柱陣列的薄膜。鍍製不同厚度的奈米銀直柱陣列(202nm~321nm)與不同厚度的奈米銀斜向陣列(285nm~335nm),研究與分析其穿透率、反射率與表面增強拉曼散射(SERS)等光學特性。
奈米銀直柱陣列應用於表面增強拉曼光譜之染料分子探測,點滴溶液於基板上之羅丹明6G (R6G)分子藉由532nm激發波長量測到分子訊號,且隨著奈米銀直柱陣列之厚度增長,偵測得拉曼光譜訊號也隨之增強。另外,同樣的量測條件下比較奈米銀直柱陣列與奈米銀斜柱陣列,發現前者具有較強的拉曼訊號。
為了瞭解SERS訊號的產生,利用有限時域差分法(FDTD)進行模擬與分析奈米銀直柱陣列內的電場增強情形,並且觀察最強的區域性電場共振(hot spots)發生。由奈米銀直柱陣列結構當作SERS基板可以量測得R6G分子在10-8莫耳濃度下之拉曼光譜訊號。
論文英文摘要:In recent years, Surface-enhanced Raman Scattering (SERS) technique was applied to chemical and biomolecule detection. And SERS can be improved by controlling the size and shape of nanostructure. Therefore, thin films comprising silver-pillar arrays were fabricated on glass and Si-wafer by physical vapor deposition (PVD) technique. And, silver-pillar arrays with different thickness (202nm~321nm) and silver-nonarod arrays with different thickness (285nm~335nm) were fabricated for studying the optical reflection, transmission and SERS.
Silver-pillar arrays were applied in SERS detection for analyte of dye, the signals from Rhodamine 6G (R6G) of dropped on the substrates were detected by excited wavelength at 532nm. The Raman signals measured from silver-pillar arrays increased as thickness increased. Furthermore, in the same condition of measurement, the Raman signals from silver-pillar arrays were better than silver-nanorod arrays.
In order to know the electromagnetic enhancement within the nanostructure, finite difference time domain (FDTD) method was applied here to simulate the field enhanced area (hot spots) distribution. The silver-pillar arrays treated as SERS substrates and the Raman signals from substrates could be measured with concentration of R6G in 10-8M.
論文目次:摘 要 i
ABSTRACT ii
誌謝 iii
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論與文獻回顧 1
1.1 前言與研究動機 1
1.2 文獻回顧 2
1.2.1 各種SERS基板 2
1.2.2 金屬結構間隙對SERS的影響 7
1.3 研究動機 11
第二章 原理與方法介紹 13
2.1 拉曼散射 13
2.2 表面增強拉曼散射 18
2.2.1電磁效應與局域性表面電漿共振 19
2.3 SERS增強因子(Enhancement factors, EFs) 19
2.3.1 實驗量測之SERS增強因子 20
2.4有限時域差分法 22
2.4.1 一維結構之有限時域差分法運作模式 23
2.4.2 吸收邊界 25
第三章 實驗架構與量測系統 26
3.1 蒸鍍系統 26
3.2 製鍍步驟 28
3.3 奈米銀斜柱與奈米銀直柱之製鍍方法 30
3.4 光譜量測系統 31
3.5 拉曼光譜量測系統 33
3.5.1 拉曼光譜儀 33
3.5.2 拉曼光譜量測 36
第四章 實驗結果、分析與討論 37
4.1 斜向沉積薄膜之SERS基板之近場模擬與分析 37
4.1.1 四個不連續薄膜樣品之奈米結構 38
4.1.2 近場模擬 40
4.1.3 SERS增強因子 43
4.1.4 小結論 45
4.2 奈米銀結構與製鍍參數關係 45
4.2.1 奈米銀結構之SEM圖 46
4.2.2奈米銀直柱結構之不同等效直徑分布 47
4.3 透射與反射光譜 49
4.3.1 奈米銀斜柱陣列薄膜之透射與反射光譜 51
4.3.2 奈米銀直柱陣列薄膜之透射與反射光譜 53
4.3.3 奈米結構在特定波長下之穿透率、反射率與消光率 56
4.4 拉曼光譜圖 56
4.4.1 奈米銀斜柱陣列結構之拉曼光譜圖 58
4.4.2 奈米銀直柱陣列結構之拉曼光譜圖 59
4.4.3 SERS EFs之計算 60
4.5 FDTD近場模擬 63
4.5.1 歸納不同尺寸的奈米銀直柱之直徑(D)與厚度(H) 63
4.5.2 FDTD近場模擬與分析兩奈米銀直柱之場分佈 64
4.6 間隙(gap)數目統計 68
第五章 結論 70
5.1 第一部份 70
5.2 第二部份 71
參考文獻 71
論文參考文獻:[1] F. Yan, M.B. Wabuyele, G.D. Griffin, A.A. Vass, T. Vo-Dinh, “Surface-enhanced Raman scattering detection of chemical and biological agent simulants,” IEEE Sensors Journal, 5 (4), pp. 665-670 (2005).
[2] V T. o-Dinh, F. Yan, M.B. Wabuyele, “Surface-enhanced Raman scattering for medical diagnostics and biological imaging,” Journal of Raman Spectroscopy, 36 (6-7), pp. 640-647 (2005).
[3] K.K. Hering, R. Möller, W. Fritzsche, J. Popp, “Microarray-based detection of dye-labeled DNA by SERRS using particles formed by enzymatic silver deposition,” ChemPhysChem, 9 (6), pp. 867-872 (2008).
[4] J. Guicheteau, L. Argue, D. Emge, A. Hyre, M. Jacobson, S. Christesen, “Bacillus spore classification via surface-enhanced Raman spectroscopy and principal component analysis,” Applied Spectroscopy, 62 (3), pp. 267-272 (2008).
[5], L. Qin, M.J. Banholzer, J.E. Millstone, C.A. Mirkin, “Nanodisk codes,” Nano Letters, 7 (12), pp. 3849-3853 (2007).
[6] H. Zhang, M.H. Harpster, H.J. Park, P.A. Johnson, W.C. Wilson, “Surface-enhanced raman scattering detection of DNA derived from the west nile virus genome using magnetic capture of raman-active gold nanoparticles,” Analytical Chemistry, 83 (1), pp. 254-260 (2011).
[7] R.A. Ando, N.P.W. Pieczonka, P.S. Santos, R.F. Aroca, “Chromic materials for responsive surface-enhanced resonance Raman scattering systems: A nanometric pH sensor,” Physical Chemistry Chemical Physics, 11 (34), pp. 7505-7508 (2009).
[8] M. Baibarac, M. Cochet, M. Łapkowski, L. Mihut, S. Lefrant, I. Baltog, “SERS spectra of polyaniline thin films deposited on rough Ag, Au and Cu. Polymer film thickness and roughness parameter dependence of SERS spectra,” Synthetic Metals, 96 (1), pp. 63-70 (1998).
[9] Q. Yu, S. Braswell, B. Christin, J. Xu, P.M. Wallace, H. Gong, D. Kaminsky, “Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays,” Nanotechnology, 21 (35), art. no. 355301 (2010).
[10] V.P. Drachev, M. Thoreson, E. Khaliullin, A.K. Sarychev, D. Zhang, D. Ben-Amotz, V.M. Shalaev, “Semicontinuous silver films for protein sensing with SERS,” Proceedings of SPIE - The International Society for Optical Engineering, 5221, pp. 76-81 (2003).
[11] S.B. Chaney, S. Shanmukh, R.A. Dluhy, Y.-P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Applied Physics Letters, 87 (3) , art. no. 031908 , pp. 1-3. (2005)
[12] Z.-Y. Zhang, Y.-J. Liu, Q. Zhao, Y.-P. Zhao “The effect of layer absorbance for complex surface enhanced Raman scattering substrates,” Applied Physics Letters, 94 (14), art. no. 143107 (2009)
[13] Q. Zhou, Y. He, J. Abell, Z. Zhang, Y. Zhao “Optical properties and surface enhanced raman scattering of L-shaped silver nanorod arrays,” Journal of Physical Chemistry C, 115 (29), pp. 14131-14140. (2011)
[14] Q. Zhou, Y. He, J. Abell, Z. Zhang, Y. Zhao “Surface-enhanced Raman scattering from helical silver nanorod arrays,” Chemical Communications, 47 (15), pp. 4466-4468. (2011)
[15] S. Habouti, M. Mátéfi-Tempfli, C.-H. Solterbeck, M. Es-Souni, S. Mátéfi-Tempfli, M. Es-Souni, “On-substrate, self-standing Au-nanorod arrays showing morphology controlled properties,” Nano Today, 6 (1), pp. 12-19. (2011)
[16] M. Suzuki, K. Nakajima, K. Kimura, T. Fukuoka, Y. Mori, “Au nanorod arrays tailored for surface-enhanced raman spectroscopy,” Analytical Sciences, 23 (7), pp. 829-833 (2007).
[17] M. Suzuki, W. Maekita, Y. Wada, K. Nagai, K. Nakajima, K. Kimura, T. Fukuoka, Y. Mori, “Ag nanorod arrays tailored for surface-enhanced Raman imaging in the near-infrared region,” Nanotechnology, 19 (26), art. no. 265304 (2008).
[18] J. Guicheteau, S. Christesen, D. Emge, P. Wilcox, III A.W. Fountain “Assessing metal nanofabricated substrates for surface-enhanced Raman scattering (SERS) activity and reproducibility,” Applied Spectroscopy, 65 (2), pp. 144-151. (2011)
[19] P.C. Lee, D. Meisel “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” Journal of Physical Chemistry, 86 (17), pp. 3391-3395. (1982)
[20] W.N. Radicic, E.V. Ni, C. Tombrello, III A.W. Fountain “Characterizing the spectral reproducibility of quartz-bound Au nanoparticle substrates for surface-enhanced Raman spectroscopy,” Proceedings of SPIE - The International Society for Optical Engineering, 6218 , art. no. 621803 (2006)
[21] B.M. Cullum, H. Li, M.V. Schiza, M.E. Hankus “Characterization of multilayer-enhanced surface-enhanced Raman scattering (SERS) substrates and their potential for SERS nanoimaging,” Nanobiotechnology, 3 (1), pp. 1-11. (2007)
[22] N.M.B. Perney, J.J. Baumberg, M.E. Zoorob, M.D.B. Charlton, S. Mahnkopf, C.M. Netti “Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering,” Optics Express, 14 (2), pp. 847-857. (2006)
[23] B.E. Brinson, J.B. Lassiter, C.S. Levin, R. Bardhan, N. Mirin, N.J. Halas “Nanoshells made easy: Improving Au layer growth on nanoparticle surfaces,” Langmuir, 24 (24), pp. 14166-14171. (2008)
[24] S. Li, M.L. Pedano, S.-H. Chang, C.A. Mirkin, G.C. Schatz “Gap structure effects on surface-enhanced raman scattering intensities for gold gapped rods,” Nano Letters, 10 (5), pp. 1722-1727. (2010)
[25] M.L. Pedano, S. Li, G.C. Schatz, C.A. Mirkin “Periodic electric field enhancement along gold rods with nanogaps,” Angewandte Chemie - International Edition, 49 (1), pp. 78-82. (2010)
[26] E.S. Barnard, J.S. White, A. Chandran, M.L. Brongersma “Spectral properties of plasmonic resonator antennas,” Optics Express, 16 (21), pp. 16529-16537. (2008)
[27] T. Sondergaard, S.I. Bozhevolnyi “Metal nano-strip optical resonators,” Optics Express, 15 (7), pp. 4198-4204. (2007)
[28] J. Dorfmuller, R. Vogelgesang, R.T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, K. Kern “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Letters, 9 (6), pp. 2372-2377. (2009)
[29] A.-S. Grimault, A. Vial, M.L. De La Chapelle “Modeling of regular gold nanostructures arrays for SERS applications using a 3D FDTD method,” Applied Physics B: Lasers and Optics, 84 (1-2), pp. 111-115. (2006)
[30] A. Dhawan, S.J. Norton, M.D. Gerhold, T. Vo-Dinh “Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimmers,” Optics Express, 17 (12), pp. 9688-9703. (2009)
[31] J.L. Yao, G.P. Pan, K.H. Xue, D.Y. Wu, B. Ren, D.M. Sun, J. Tang, X. Wu, Z.Q. Tian “A complementary study of surface-enhanced Raman scattering and metal nanorod arrays,” Pure and Applied Chemistry, 72 (1-2), pp. 221-228. (2000)
[32] Y. J. Jen, C. H. Chen, and C. W. Yu, “Deposited metamaterial thin film with negative refractive index and permeability in the visible regime,” Opt. Lett., vol. 36, No. 6, (2011)
[33] C.V. Raman, K.S. Krishnan “A new type of secondary radiation,” Nature, 121 (3048) ,pp. 501-502. (1928)
[34] Eric C. Le Ru and Pablo G. Etchegoin, Principal of SERS and relate plasmonic effects, New Zealand: Elsevier, 2009.
[35] J. Twardowski, P. Anzenbacher and M. Masson, Raman and IR spectroscopy in biology and biochemistry, New York: Poblish Scientific Publishers, 1994.
[36] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. AP-14, pp. 302-307, (1966)
[37] J.P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. vol. 114, pp. 185-200, (1994)
[38] K. Robbie, J. C. Sit, and M. J. Brett, "Advanced techniques for glancing angle deposition," J . Vac . Sci . Technol. B, Vol. 16, pp. 1115-1122 (1998)
[39]Herma van Kranenburg and Cock Lodder, “Tailoring growth and local composition by oblique-incidence deposition: a review and new experimental data,” Materials Science and Engineerin, Rll, 295-354, (1994)
[40] U.K. Chettiar, P. Nyga, M.D. Thoreson, A.V. Kildishev, V.P. Drachev, V.M. Shalaev, “ FDTD modeling of realistic semicontinuous metal films,” Applied Physics B: Lasers and Optics, 100 (1), pp. 159-168. (2010)
[41] A.D. Rakic, A.B. Djurisic, J.M. Elazar, M.L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Applied Optics, 37 (22), pp. 5271-5283. (1998)
[42] I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” Journal of the Optical Society of America,” vol. 55, No. 10, (1965)
[43] 李正中,光學薄膜與鍍膜技術,臺北,藝軒圖書出版社,2006,第292頁。
論文全文使用權限:不同意授權