現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:穿透式以及反射式低色散波板之多層膜簡化設計 [以論文名稱查詢館藏系統]
論文英文名稱:Simplified thin film design for transmission type and reflection type achromatic waveplates [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:電資學院
系所名稱:光電工程系研究所
畢業學年度:101
出版年度:101
中文姓名:游舜凱
英文姓名:Shun-kai Yu
研究生學號:99658032
學位類別:碩士
語文別:中文
口試日期:2012-07-19
論文頁數:55
指導教授中文名:任貽均
口試委員中文名:藍永強;周趙遠鳳;游竟維
中文關鍵詞:交錯沉積偏極轉換雙折射非均向薄膜
英文關鍵詞:bidepositionpolarization conversionbirefringenceanisotropic thin film
論文中文摘要:本研究是探討利用非均向薄膜搭配均向薄膜簡化設計出穿透式以及反射式低色散波板。這種簡化設計可以使製程上更加容易。
穿透式波板則是模擬以堆疊13層薄膜突破過往研究需要堆疊50層以上薄膜的高層數限制,以高低折射率交替之週期性對稱膜堆(ABA)為設計主軸,並且探討AB之間高低折射率差與其非均向層雙折射率對相位變化的影響進而設計出低射散且少層數的廣波域波板。
而反射式波板則是穿透式波板的延伸,利用對稱膜堆搭配銀的奈米均向薄膜和折射率匹配層為主要結構進行模擬,而對稱膜堆ABA需至少有一層為非均向薄膜 ,並調整其厚度與折射率設計出能在止帶與通帶皆可使用的消色散反射式波板。
論文英文摘要:In this study, transparent-type and reflective-type achromatic waveplate are designed by a symmetrical film stack. The structure of transparent-type achromatic waveplate is (ABA)n, and the structure of reflective-type achromatic waveplate is (index matching layers (IMLs)/(ABA)n/Ag). A and B are thin films of different index.
The number of thin film layers of transparent-type achromatic waveplate can be simplified by arranging a high-index contrast of layers A and B in this study. The number of layers is 13 layers. Birefringence and high contrast of refractive index are investigated for transparent-type achromatic waveplate.
Reflective-type achromatic waveplate is designed by the structure (IMLs)/(ABA)n/Ag). IMLs is very important for the design. The material of the IMLs is selected according to the equivalent refractive index E of symmetrical thin film stack in the passband. The symmetrical film stack(ABA) comprises at least one anisotropic thin film. Additionally, selecting the birefringence and thickness of the thin film allows for the design of uniform phase retardation in both the passband and stopband.
論文目次:中文摘要(i)
英文摘要(ii)
誌謝(iii)
目錄(iv)
圖目錄(v)
表目錄(viii)
第一章 緒論(1)
1.1文獻回顧(1)
1.2非均向性光學薄膜 (3)
1.3非均向性偏極轉換現象(5)
1.4生物特性余光學於光學應用上(6)
1.5穿透式與反射式低色散波板之研究動機(7)
1.6傳統四分之一波板(9)
第二章 原理介紹(11)
2.1空間軸與主軸關係 (11)
2.2沉積技術介紹(13)
2.2.1斜向沉積技術原理(13)
2.2.2 交錯沉積技術(14)
2.3交錯沉積的雙折射分析(15)
2.4薄膜矩陣法(17)
2.5對稱膜堆(19)
2.6導納軌跡法(24)
2.7偏極光(28)
第三章 模擬設計(32)
3.1穿透式波板之結構介紹與模擬分析(32)
3.2 本研究穿透式四分之一波板與傳統穿透式四分之一波板之比較 (40)
3.3反射式波板之結構介紹與模擬分析(41)
3.3.1 結構介紹與設計步驟 (41)
3.3.2 模擬結果與討論 (43)
3.4不同結構之偏極轉換比較與其相位變化關係(50)
第四章 結論(51)
參考文獻(52)
論文參考文獻:參考文獻
[1] N. O. Young and J. Kowal, “Optically active fluorite films,” Nature, vol. 183, pp. 104-105, 1959.
[2] T. Motohiro and Y. Taga, “Thin film retardation plate by oblique deposition,” Applied optics, vol. 28, pp. 2466-2482, 1989.
[3] F.Horwiz, “Structure-Induced Optical Anisotropy in thin film,” PhD dissertation, University of Arizona,Optical Science Center,1893.
[4] M. C. Simon, and L. I. Perez, “Reflection and transmission coefficients in uniaxial crystals,” Journal of Modern Optics, vol. 38, pp. 503-518, 1991.
[5] I. J. Hodgkinson and Q. H. Wu, “Birefringent Thin Films and Polarizing Elements,” Singapore:World Scientific, 1997.
[6] I. J. Hodgkinson and A. Lakhtakia, “On the Motohiro-Taga interface for biaxial columnar media,” Optical Engineering, vol. 37, pp. 3268-3271, 1998.
[7] G. Y. Slepyan and A. S. Maksimenko, “Motohiro-Taga interface in sculptured thin films- absence of Bragg phenomna,” Optical Engineering, vol. 37, pp. 2843-2847, 1998.
[8] Y. J. Jen and C. L. Chiang, “Enhanced polarization conversion for an anisotropic thin film,” Optics Communications, vol. 265, pp.446-453, 2006.
[9] Y. J. Jen, C. Y. Peng and H. H. Chang, “Optical constant determination of an anisotropic thin film via polarization conversion,” Optics Express, vol.15, No. 8, pp. 4445-4451, 2007.
[10] M.C.Simon, and L.I.Perez, “Reflection and transmission coefficients in uniaxial crystals,” Journal of Modern Optics,vol.38,1991,pp.503-518.
[11] Q. H. Wu, I. J. Hodgkinson and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Optical Engineering, vol. 39, pp. 1863-1868, 2000.
[12] T. Smy, D. Vick, M. J. Brett, S. K. Dew, A. T. Wu and J. C. Sit, “Three-dimensional simulation of film microstructure produced by lancing angle deposition,” Journal of Vacuum Science and Technology A, vol. 18, pp. 2507-2512, 2000.
[13] H.Wang, “Determination of optical constants of absorbing crystalline thin films from reflectance and transmittance measureements with oblique incident, ” Journal of the optical society of America A,vol.11,1994,pp.2332-2337.
[14] H.Wang, “Reflectio/transmission measurements of anisotropic film with one of the principal axes in the direction of columnar growth, ”Journal of Modern Optics,vol.42,1995,p.497-505.
[15] D.W.Berreman, “Optics in Stratified and Anisotropic Media:4×4-Matrix
Formulation, ”Journal of the Optical Society of America,vol.62,1972,pp.502-510.
[16]I.J.Hodgkinson and Q.H.Wu,Birefringent Thin Films and Polarizing Elements(World Scientific,USA,1997).
[17] M.C.Simon,and R M Echarri, “Internal reflection in uniaxial crystals I., ”Journal of Modern Optics,vol.37,1990,pp.121-129.
[18] M.C.Simon,and R M Echarri, “Internal reflection in uniaxial crystals II., ”Journal of Modern Optics,vol.37,1990,pp.131-144.
[19] M.C.Simon,and R M Echarri, “Internal reflection in uniaxial crystals III., ” Journal of Modern Optics,vol.37,1990,pp.1139-1148.
[20]I.J.Hodgkinson, “Optical anisotropy in this film deposited obliquely:in situ observations and compiter modeling., ”Applied Optics,vol.30 pp.1303-1312.
[21]S.Wang,M.Shan and J.D.Crow, “Studies of the use of the use of gyrotropic and anisotropic materials for mode conversion in thin-film optical-wavequide applications, ”J.Appl.Phys.,vol.43,1972,pp.1861-1875.
[22]C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour, vol. 26, pp. 79-84, 1967.
[23]Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnol, Vol. 2, No. 12, pp. 770-774, 2007.
[24]H. Ghiradella, et al. “Ultraviolet reflection of a male butterfly: Interference color caused by thin-layer elaboration of wing scales,” Science Magazine, Vol. 178, pp. 1214-1217, 1972.
[25]Y. J. Jen, M. J. Lin and J. H. Chao, “Single dielectric columnar thin film as a humidity sensor,” Sensors & Actuators, B: Chemical, Vol. 149, pp. 67-70, 2010.
[26] N. W. Roberts, T. H. Chiou, N. J. Marshall, and T. W. Cronin, “A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region,” Nature Photonics, Vol. 3, pp. 641-644, 2009.
[27] Jen, Y.-J., Lakhtakia, A., Yu, C.-W., Lin, C.-F., Lin, M.-J., Wang, S.-H., and Lai, J.-R., “Biologically inspired achromatic waveplates for visible light.,” Nature communications 2, 363 (Jan. 2011).
[28] G Raffa, A Bianchetti, M T Garea, S A Comastri and L I Perez., “Single reflection quarter-wave device design.,” Journal of Physics: Conference Series,Vol.274 012127(2011).
[29] Andy C. van Popta, June Cheng, Jeremy C. Sit, and Michael J. Brett, "Birefringence enhancement in annealed TiO2 thin films", J. Appl. Phys. Vol. 102, pp. 013517, (2007).
[30] 李正中,“薄膜光學與鍍膜技術”,臺北,藝軒圖書出版社,第六版,2009。
[31] R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized light, North-Holland, Amsterdam,1999.
[32] Wang, J. J. et al. “High performance 100 mm-in-diameter true zero-order waveplates fabricated by imprint lithography,” J. Vac. Sci. Technol. B 23, 2950–2953 (2005).
[33] Yi, D.- E., Yan, Y-. B., Liu, H.- T., Si-Lu & Jin, G.- F. “Broadband achromatic phase retarder by subwavelength grating,” Opt. Commun. 227, 49–55 (2003).
論文全文使用權限:不同意授權