現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:利用全反射衰減法量測金奈米粒子之等效光學常數 [以論文名稱查詢館藏系統]
論文英文名稱:The equivalent optical constants of gold nanoparticles measured by attenuated total reflection method [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:電資學院
系所名稱:光電工程系所
中文姓名:范姜士衡
英文姓名:Shih-Heng Fan-Chiang
研究生學號:92538025
學位類別:碩士
語文別:中文
口試日期:2005-06-25
論文頁數:54
指導教授中文名:任貽均
口試委員中文名:陳學禮;劉福鯤
中文關鍵詞:金奈米粒子表面電漿共振橢偏儀非均向性
英文關鍵詞:Gold nanoparticlesSPRellipsometryanisotropic
論文中文摘要:本文主要在探討金奈米粒子的光學特性。實驗的部份,利用浸泡方式一方面使用不同直徑的金奈米粒子吸附在金膜表面;另一方面針對同ㄧ種直徑的金奈米粒子,改變不同的浸泡時間以控制金膜表面上的表面密度,並利用全反射衰減儀及橢偏儀的方法量測。
針對以上兩種金膜表面粒子的變因,使用表面電漿共振方法來量測金奈米粒子的光學常數。不同以往將金奈米粒子層以均向的折射率及消光係數視之,本研究以非均向性為前提量測金奈米粒子的非均向光學特性。而由表面電漿共振所量到的全反射衰減曲線,藉分析全反射衰減曲線在各種不同的金奈米粒子狀況下之最小共振角及半寬度的變化,可以了解奈米粒子在金膜表面所造成的光學擾動程度。
論文英文摘要:The Kretschmann configuration that 10 to 40 nm diameter colloidal Au on the surface of Au film are arranged to excite surface plasmon. It is found that the surface roughness on the gold film can be equivalent the gold particles distribution to have the same shifting and broadening of attenuated total reflection (ATR) curve compared with the ATR curve for the bare gold film. The equivalent root-mean-square (RMS) roughness heights and optical constants for various size and surface density distributions are derived from the measured ATR curves.
論文目次:中文摘要………………………………………………………………Ⅰ
英文摘要………………………………………………………………Ⅱ
誌謝…………………………………………………………………….Ⅲ
目錄…………………………………………………………………….Ⅳ
表目錄……………………………………………………………Ⅵ
圖目錄…………………………………………………………………Ⅶ
一、 緒論…………………………………………………………1
1.1 表面電漿的介紹……………………………………………1
1.2 金奈米粒子的特性…………………………………………4
1.2.1 金奈米粒子在溶液中的特性……………………………………5
1.2.2 奈米粒子的電漿耦合……………………………………………6
1.2.3 偶極電漿共振……………………………………………………7
1.2.4 電四極電漿共振…………………………………………………8
1.3 表面粗糙度的影響……………………………………………9
1.4 自我組裝分子……………………………………………………11
二、 原理…………………………………………………………12
2.1 表面電漿之色散關係……………………………………………12
2.2 稜鏡/金屬/空氣系統反射率之勞侖茲形式……………………15
2.3 粗糙度對色散關係的影響………………………………………17
2.4 Mie理論………………………………………………………..20
2.4.1解向量波方程式…………………………………………………20
2.4.2平面波在向量球諧和的擴展……………………………………21
2.4.3散射係數…………………………………………………………22
三、 實驗…………………………………………………………24
3.1蒸鍍流程……………………………………………………………24
3.2金奈米粒子的製作…………………………………………………26
3.2.1不同直徑的金奈米粒子(相似表面濃度)……………………26
3.2.2相同直徑的金奈米粒子(不同表面濃度)……………………26
3.3 量測方法…………………………………………………………27
3.4 分析方法………………………………………………………29
3.4.1判斷金奈米粒子是否為非均向薄膜………………………...29
3.4.2將金奈米粒子視為粗糙度……………………………………30
四、 實驗結果與討論……………………………………………32
4.1 實驗結果…………………………………………………………32
4.1.1相似表面密度不同直徑的金奈米粒子之SEM圖……………32
4.1.2相同直徑不同表面濃度的金奈米粒子之SEM圖…………34
4.1.3利用滴的方式接金奈米粒子………………………………36
4.1.4判斷金奈米粒子為均向或是非均向性薄膜—方法一……37
4.1.5判斷金奈米粒子為均向或是非均向性薄膜—方法二……39
4.1.6利用粗糙度理論看待金奈米粒子……………..…………43
4.1.6.1不同直徑相似表面濃度的金奈米粒子………………43
4.1.6.2相同直徑不同表面濃度的金奈米粒子………………45
4.2 討論………………………………………………………………49
五、 結論…………………………………………………………51
六、 參考資料……………………………………………………52
論文參考文獻:【1】H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings, “ Springer-Verlag, Berlin, 1988.
【2】E. Kretschmann, H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch., 23A, pp.2135–2136, 1968
【3】A. Otto, “Excitation of surface plasma waves in silver by the method of frustrated total reflection,” Z. Physik, 216, pp.398–410, 1968
【4】J. Homola, “Surface plasmon resonance sensors: review,” Sensors and Actuators B, 54, pp.3-15, 1999
【5】M.J. O’Brien, V.H. Perez-Luna, “A surface plasmon resonance array biosensor based on spectroscopic imaging,” Biosensors and Bioelectrons, 16, pp.97-108, 2001
【6】P. Schuck, “Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules,” Annual Review of Biophysics and Biomolecular Structure, 26, pp.541-566, 1997
【7】http://www.carsten-soennichsen.de/nano/CSoennichsenDiss.pdf
【8】Gen Tsutsui, Shujuan Huang,“Well-size-controlled colloidal gold nanoparticles dispersed in organic solvents,” Jpn. J. Appl. Phys., 40, pp.346-349, 2001
【9】E. Hutter, S. Cha, “Role of substrate metal in gold nanoparticles enhanced surface plasmon resonance imaging,” J. Phys. Chem. B, 105, pp.8-12, 2001
【10】E. Hutter, J. H. Fendler, “Surface plasmon resonance studies of gold and silver nanoparticles linked to gold and silver substrates by 2-Aminoethanethiol and 1,6-Hexanedithiol,” J. Phys. Chem. B, 105, pp.11159-11168, 2001
【11】L. Andrew Lyon, David J. Pen˜ a, and Michael J. Natan, “Surface Plasmon Resonance of Au Colloid-Modified Au Films: Particle Size Dependence,” J. Phys. Chem. B, 103, pp.5826-5831, 1999
【12】D. P. O'Brien, G. Kemball-Cook, A. M. Hutchinson, “Surface plasmon resonance studies of the interaction between factor VII and tissue factor. Demonstration of defective tissue factor binding in a variant FVII molecule (FVII-R79Q),” Biochemistry, 33, pp.14162-14169, 1994
【13】 K. A. Peterlinz, R. M. Georgiadis, T. M. Herne, M. J. Tarlov, “Observation of Hybridization and Dehybridization of Thiol-Tethered DNA Using Two-Color Surface Plasmon Resonance Spectroscopy,” J. Am. Chem. Soc., 119, pp.3401-3402, 1997
【14】S.-J. Chen, F.C. Chien, G.Y. Lin, K.C. Lee, “Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles,” Optics Letters, 29, pp.1390-1392, 2004
【15】K. C. Lee, S. T. Pai, Y. C. Chang, M. C. Chen, and W.-H. Li, Mater. “Optimum massthickness of Ag-nanoparticle film for surface enhanced raman scattering ,”Sci. Eng. B, 52, pp.189-194, 1998
【16】Sato, Toshihiko, Ahmed, “Single electron transistor using a molecularly linked gold colloidal particle chain,” Journal of Applied Physics, 82, pp.696-701, 1997
【17】K. H. Su, Q. H. Wei, X. Zhang, “Surface plasmon coupling between two nano Au particles,” IEEE-Nano' 2003 Third IEEE Conference on Nanotechnology, 2, pp.279-282, 2003
【18】K. Lance Kelly, Eduardo Coronado, “The optical properties of metal nanoparticles: the influence of size, shape, and Dielectric environment,” J. Phys. Chem. B, 107, pp.668-677, 2003
【19】J. P. Rossi, D. Maystre, “Rigorous numerical study of speckle patterns for two-dimensional,random microrough surface,” Opt. Eng., 25, pp.613-517, 1986
【20】Soonwoo Chah, Janos H. Fendler and Jongheop Yi, “In-situ analysis of stepwise self-assembled 1,6-Hexanedithiol multilayers by surface plasmon resonance measurements,” Chem. Commun., 21, pp.2094-2095, 2002
【21】 K. A. Peterlinz, R. Georgiadis, “In situ of self-assembly by surface plasmon resonance spectroscopy,” Langmuir, 12, pp.4731-4740, 1996
【22】B. Rothenhausler, J. Rabe, P. Korpium, W. Knoll, “On the decay of plasmon surface surface polaritons at smooth and rough Ag-ATR interfaces:a reflectance and photo-acoustic study,” Surf. Sci, 1, pp.373, 1984
【23】A. A. Maradudin, D.L. Mills, “Scattering and absorption of electromagnetic radiation by a roughness,” Phys. Rev. B, 11, pp.1392-1415, 1975
【24】A. A. Maradudin, W. Zierau, “Effects of surface roughness on the surface-polariton dispersion relation,” Phys. Rev. B, 14, pp.484-499, 1976
【25】Craig F. Bohren, Donald R. Huffman, “Absorption and scattering of light by small particles,” Wiley Interscience: New York, 1983
【26】G. I. Surdutovich, J. Kolenda, “An interference method for the determination of thin film anisotropy,” Thin Solid Film, 279, pp.119-123, 1996
【27】Haiming Wang, “Reflection/transmission measurements of anisotropic films with one of the principal axes in the direction of columnar growth,” Journal of Modern Optics, 42, pp.497-505, 1995
論文全文使用權限:同意授權於2006-07-13起公開