現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:利用交錯沈積法提高光學薄膜之非均向性 [以論文名稱查詢館藏系統]
論文英文名稱:Enhance the anisotropic optical properties of thin films by bideposition technique [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:電資學院
系所名稱:光電工程系所
中文姓名:張?睇
英文姓名:Heng-Hao Chang
研究生學號:92538013
學位類別:碩士
語文別:中文
口試日期:2005-06-25
論文頁數:60
指導教授中文名:任貽均
口試委員中文名:李正中;吳俊傑;陳學禮
中文關鍵詞:鋸齒狀薄膜交錯沈積法雙折射偏極光
英文關鍵詞:zigzag thin-filmbidepositionbirefringentpolarized light
論文中文摘要:本論文利用斜向柱狀薄膜特有的雙折射特性研製垂直正向入射之光學元件。理論上以矩陣法分析多層非均向性膜每一界面的電磁場邊界條件,進而計算整個膜系的反射係數,另一方面,以光學導納圖推算並解釋非均向性薄膜,其雙折射的實際成因。
實驗上,運用Fabry-Perot的原理,以交錯沈積方式製作鋸齒狀薄膜,控制鋸齒結構的週期,使不同偏極態的垂直入射光有不同的共振光譜,產生垂直入射之偏極選擇現象。另一方面,鍍膜中旋轉基板,製鍍螺旋結構之奈米薄膜,控制螺旋旋轉週期,觀察各種情形下,左旋入射光與右旋入射光之穿透率差異,以期實現左(右)旋光選擇器之目的。
論文英文摘要:In this study, various sculptured thin films are prepared and analyzed their anisotropic optical properties. Optical features including the reflectance and transmittance of stratified anisotropic media are calculated using the Berreman 4×4 matrix. The admittance diagram is applied to simulate the equivalent admittance of the anisotropic film.
Zigzag bideposited thin films with different period are prepared as the space layers of metal-dielectric-metal Fabry-Perot filters. The polarization spectra of filters are measured and analyzed the polarization selection effect upon normal incident. Helicoidally bideposited thin films with different pitch numbers have different transmittance spectra for right handed circular polarization and left handed circular polarization.
論文目次:中文摘要.....................................i
英文摘要.....................................ii
誌謝.........................................iii
目錄.........................................iv
圖目錄.......................................vi
第一章 緒論.................................1
1.1文獻回顧..................................1
1.2非均向光學薄膜簡介........................2
1.3各種微觀結構薄膜..........................3
1.4以M-D-M結構探討交錯沈積的非均向特性.......4
第二章 原理介紹.............................5
2.2空間軸與主軸的轉換........................6
2.3主軸的Fresnel’s方程式....................7
2.4薄膜矩陣法................................9
2.5透射率與反射率............................13
2.6非均向導納法..............................18
2.7螺旋薄膜之旋光性..........................21
第三章 實驗與分析方法.......................26
3.1蒸鍍系統..................................26
3.2蒸鍍流程..................................29
3.3交錯沈積行為..............................30
3.4量測方法..................................33
3.4.1F-P的量測方式 ...........................33
3.4.2螺旋薄膜的量測..........................35
3.4.3斜向交錯薄膜的量測方式 ..................36
3.5分析方法..................................38
第四章 結果與討論 ...........................39
4.1結果.......................................39
4.2討論.......................................50
第五章 結論..................................56
5.1結論.......................................56
參考文獻......................................57
論文參考文獻:[1] N. O. Young and J. Kowal, “Optically active fluorite films,” Nature, vol. 183, pp. 104-105, 1959.
[2] T. Motohiro and Y. Taga, “Thin film retardation plate by oblique deposition,” Applied optics, vol. 28, pp. 2466-2482, 1989.
[3] R. M. A. Azzam, “Chiral thin solid films: Method of deposition and applications,” Appl. Phys. Lett., vol. 61, pp. 3118-3120, 1992.
[4] I. Hodgkinson, Q. H. Wu, and A. McPhun, “Incremental-growth model for the deposition of spatially modulated thin film nanostructures,” J. Vac. Sci Technol. B, vol. 16, pp. 2811-2816, 1998.
[5] K. Robbie, M. J. Brett and A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci Technol. A, vol. 13, pp. 2991-2993, 1995.
[6] I. J. Hodgkinson, Q. H. Wu, J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Applied Optics, vol. 37, pp. 2653-2659, 1998.
[7] F. Horowitz and H. A. Macleod, “Determination of principal refractive indices of birefringent films,” Optical Interference Coatings, Vol. 6 of 1988 OSA Technical Digest Series ~Optical Society of America, Washington, D.C., pp. 203-206, 1988.
[8] M. C. Simon, and L. I. Perez, “Reflection and transmission coefficients in uniaxial crystals,” Journal of Modern Optics, vol. 38, pp. 503-518, 1991.
[9] I. J. Hodgkinson and Q. H. Wu, “Birefringent Thin Films and Polarizing Elements,” Singapore:World Scientific, 1997.
[10] A. Lakhtakia and I. J. Hodgkinson, “Spectral response of dielectric thin-film helicoidal bianisotropic medium bilayer,” Optics Commun., vol. 167, pp. 191-202, 1999.
[11] I. J. Hodgkinson, “Optical anisotropy in thin films deposited obliquely: in situ observations and computer modeling,” Applied Optics, vol. 30, pp. 1303-1312, 1991.
[12] H. Wang, “Determination of optical constants of absorbing crystalline thin films from reflectance and transmittance measurements with oblique incident,” J. Opt. Soc. Am. A, vol. 11, pp. 2331-2337, 1994.
[13] I. Hodgkinson and A. Lakhtakia, “On the Motohiro-Taga interface for biaxial columnar media,” Optical Engineering, vol. 37, pp. 3268-3271, 1998.
[14] G. Y. Slepyan and A. S. Maksimenko, “Motohiro-Taga interface in sculptured thin films- absence of Bragg phenomna,” Optical Engineering, vol. 37, pp. 2843-2847, 1998.
[15] J. C. Sit, D. J. Broer, and M. J. Brett, “Optical devices fabricated from porous thin films embedded with liquid crystals,” IEEE Electron Devices Meeting, pp. 123-126, 1999.
[16] Q. H. Wu, I. J. Hodgkinson and A. Lakhtakia, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Optical Engineering, vol. 39, pp. 1863-1868, 2000.
[17] P. Yeh and C.Gu, “Optics of Liquid Crystal Displays,”John Wiley & Sons, Inc, Chapter 7, 1999.
[18] I. J. Hodgkinson and Q. H.Wu, “Serial bideposition of anisotropic thin films with enhanced linear birefringence,” Applied Optics, vol. 38, pp. 3621-3625, 1999.
[19] I. Hodgkinson, Q. H. Wu, and A. McPhun, “Incremental-growth model for the deposition of spatially modulated thin film nanostructures,” J. Vac. Sci Technol. B, vol. 16, pp. 2811-2816, 1998.
[20] Y. Watanabe, T. Yuasa, T. Akatsuka, B. Devaraj and H. Inaba, “Enhancement of laser CT image contrast by correction of artifacts due to surface effects,” Optical Society of America, vol. 3, pp. 104-110, 1998.
[21] S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt., vol. 42, pp. 4573-4579, 2003.
[22] T. Smy, D. Vick, M. J. Brett, S. K. Dew, A. T. Wu and J. C. Sit, “Three-dimensional simulation of film microstructure produced by glancing angle deposition,” J. Vac. Sci. Technol. A, vol. 18, pp. 2507-2512, 2000.
[23] R. Messier and A. Lakhtakia, “Sculptured thin films II. Experiments and applications,” Mat Res Innov., vol. 2, pp. 217-222, 1998.
[24] H. Wang, “Reflection/transmission measurements of anisotropic films with one of the principal axes in the direction of columnar growth,” Journal of Modern Optics, vol. 42, pp. 497-505, 1995.
[25] I. J. Hodgkinson, F. Horowitz, H. A. Macleod, M. Sikkens, and J. J. Wharton, “Measurement of the principal refractive indices of thin filmsdeposited at oblique incidence,” Optical Society of America, vol. 2, pp. 1693-1697, 1985.
[26] I. J. Hodgkinson, and Q. H. Wu, “Effective principal refractive indices and column angles for periodic stacks of thin birefringent films,” J. Opt. Soc. Am. A, vol. 109, pp. 2065-2071, 1993.
[27] I. J. Hodgkinson and Q. H. Wu, “Vacuum deposited biaxial thin films with all principal axes inclined to the substrate,” J. Opt. Soc. Am. A, vol. 17, pp. 2928-2932, 1999.
[28] A. C. van Popta, J. C. Sit, and M. J. Brett, “Optical properties of porous helical thin films,” Appl. Opt., vol. 43, pp. 3632-3639, 2004.
論文全文使用權限:同意授權於2007-07-21起公開