現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:鈀催化呋喃衍生物結構異構物的選擇性合成;
新型有機染料對於染料敏化太陽能電池 [以論文名稱查詢館藏系統]
論文英文名稱:Palladium Catalysis Regioselective Benzofuran Derivative Synthesis;
Novel Metal Free Organic Dyes for Dye-Sensitized Solar Cells [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:生物科技研究所
中文姓名:徐明光
英文姓名:Ming-Kuang Hsu
研究生學號:94688007
學位類別:碩士
語文別:中文
口試日期:2007-06-14
論文頁數:93
指導教授中文名:黃聲東
口試委員中文名:郭憲壽;林俊茂
中文關鍵詞:呋喃選擇性異構物合成碳-碳偶合鈀催化染料敏化太陽能電池有機染料釕錯合物二氧化鈦
英文關鍵詞:benzofuranRegioisomer synthesisC-C couplingPalladium catalysisdye-sensitized solar cellorganic dyesRuthenium complexesTiO2
論文中文摘要:這篇論文分為兩個部分,在第一個部分中,我們知道benzofurans的衍生物存在於自然界中,而且具有許多的生物活性,如抗癌、抗病毒、抑制免疫、抗氧化、抗菌等等活性。所以在論文的第一部份我們想要探討的是利用1.Sonogashira coupling reaction 2.heterannulation這兩個步驟,使用Pd(II)這種過渡金屬當催化劑,在CuI當Co-catalyst以及amine base於有機溶劑的環境下,使用兩種相同的起始物,2-iodophenol以及Methyl 3-butynoate去催化合成benzofuran 的衍生物。在固定的反應條件下,僅改變 Co-catalyst ( CuI )的當量數,可以選擇性的得到兩種不同的產物;二號位置或三號位置上有取代的benzofuran。或許可以藉由此方式來幫助研究有關於benzofuran衍生物先導藥物的開發。

由於社會的發展,人們對石油的需求越來越大。但是石化燃料終會耗竭,並帶來空氣污染。所以發展乾淨、應用範圍廣、取之不盡、用之不竭的替代能源為當務之急。所以在本論文的第二部分主要討論染料敏化太陽能電池(dye-sensitized solar cells, DSSCs)之染料部分,至目前為止,具備較高效能的染料敏化太陽能電池其成本仍然過高,因此為了降低成本而發展出以有機染料為主的染料敏化太陽能電池。我們計劃開發新型的有機染料。對已知的染料稍做改變,使染料能運用於敏化太陽能電池。化合物 chromeno[3’,2’:3,4]pyrido[1,2a][1,3]benzimidazole chromophore為一種已知的偏長波長染料,其合成方式可由兩步得到。到目前為止並未有以該化合物作為敏化劑的敏化太陽能電池。因此本計畫以該染料為設計模版,在模板上接上carboxylic acid官能基使染料能緊密吸附在TiO2上。
論文英文摘要:This thesis consists of two parts. In the first part, as we known Benzo[b]furans are of considerable interest due to their occurrence in nature as well as their biological activities, such as anticancer、antiviral、immunosup-pressive、antioxidant、antifungal. So in the first part of the thesis, we want to investigate that benzo[b]furans accomplished in two steps:1.Sonogashira coupling reaction 2.heterannulation. The reaction is performed with a palladium catalyst, a copper(I) cocatalyst, and an amine base in organic solvent. Using the same compounds; 2-iodophenol and Methyl 3-butynoate to synthesis benzofuran derivatives. In the same reaction condition, we only change the equivalent of CuI that we can get two different compounds, 2 or 3 substitutedbenzofuran derivatives. We can get some help about the investigation of benzofuran derivatives Drug Lead in this way.

The change of mankind's life with the development of the technology and becomes more convenience and comfortable. It also makes us to need more energy. So it is very important to develop the new energy. In the second part of this thesis mainly discusses the dyestuffs part of the dye-sensitized solar cell. To date the cost of the highest efficiency of the dye-sensitized solar cell is still too high. Therefore , In order to lower costs, we developed dye-sensitized solar cell based on organic dyes. We plan to develop the new-type organic dyes. We try to modify the known dyestuffs slightly, enable dyestuffs to apply to the dye-sensitized solar cell. The known compound chromeno[3’,2’:3,4]pyrido[1,2a][1,3]benzimidazole chromophore was a relatively long-wavelength fluorophore and easily prepared in two steps. Up till now this chemical compound has not been used on the dye-sensitized solar cell. We will incorporate a carboxylic-acid group in this compound to make sure it can bind strongly to TiO2.
論文目次:目 錄

中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 序論 1
1.1 前言 1
1.2 Palladium chemistry 3
第二章 文獻回顧 9
2.1 呋喃衍生物 9
2.2 傳統上benzofuran以及其衍生物的合成方法 13
2.3 利用過渡金屬合成benzofuran衍生物的方法 15
2.4 研究動機與目的 17
第三章 實驗方法與設備 18
3.1 儀器與試藥 18
3.1.1 實驗儀器 18
3.1.2 實驗試藥 19
3.2 研究方法與步驟 20
第四章 結果與討論 23
4.1選擇性化合物的特徵峰 23
4.2選擇性合成產物條件探索 24
4.2.1 Pd催化劑對反應的影響 25
4.2.2 Copper salt對反應的影響 26
4.2.3鹼對反應的影響 26
4.3對起始物官能基耐受性 28
第五章 結論 31
參考文獻 32
附錄
附圖1 Benzofuran-2-yl-acetic acid methyl ester之1H-NMR圖譜 35
附圖2 Benzofuran-2-yl-acetic acid methyl ester之13C-NMR圖譜 36
附圖3 Benzofuran-2-yl-acetic acid methyl ester之FT-IR圖譜 37
附圖4 Benzofuran-2-yl-acetic acid methyl ester之1H-NMR圖譜 38
附圖5 Benzofuran-2-yl-acetic acid methyl ester之13C-NMR圖譜 39
附圖6 Benzofuran-2-yl-acetic acid methyl ester之FT-IR圖譜 40
附圖7 (5-Formyl-7-methoxy-benzofuran-2-yl)-acetic acid
methyl ester之1H-NMR圖譜 41
附圖8 (5-Formyl-7-methoxy-benzofuran-2-yl)-acetic acid
methyl ester之13C-NMR圖譜 42
附圖9 (5-Formyl-7-methoxy-benzofuran-2-yl)-acetic acid
methyl ester之FT-IR圖譜 43
附圖10 (5-Formyl-7-methoxy-benzofuran-3-yl)-acetic acid
methyl ester之1H-NMR圖譜 44
附圖11 (5-Formyl-7-methoxy-benzofuran-3-yl)-acetic acid
methyl ester之13C-NMR圖譜 45
附圖12 (5-Formyl-7-methoxy-benzofuran-3-yl)-acetic acid
methyl ester之FT-IR圖譜 46
附圖13 2-Methoxycarbonylmethyl-benzofuran-5-carboxylic acid
methyl ester之1H-NMR圖譜 47
附圖14 2-Methoxycarbonylmethyl-benzofuran-5-carboxylic acid
methyl ester之13C-NMR圖譜 48
附圖15 2-Methoxycarbonylmethyl-benzofuran-5-carboxylic acid
methyl ester之FT-IR圖譜 49
附圖16 3-Methoxycarbonylmethyl-benzofuran-5-carboxylic acid
methyl ester之1H-NMR圖譜 50
附圖17 3-Methoxycarbonylmethyl-benzofuran-5-carboxylic acid
methyl ester之13C-NMR圖譜 51
附圖18 3-Methoxycarbonylmethyl-benzofuran-5-carboxylic acid
methyl ester之FT-IR圖譜 52


目 錄

中文摘要 i
英文摘要 ii
目錄 iv
表目錄 v
圖目錄 vi
第一章 序論 1
1.1 前言 1
1.2 太陽能電池的種類 3
第二章 文獻回顧 6
2.1 染料敏化太陽能電池 6
2.2 染料敏化太陽能電池的工作原理 8
2.3 光敏化劑-染料 10
2.4 研究動機與目的 15
第三章 實驗方法與設備 18
3.1 儀器與試藥 18
3.1.1 實驗儀器 18
3.1.2 實驗試藥 19
3.2 實驗方法與步驟 20
3.2.1化合物2及化合物3的合成方法 20
第四章 結果與討論 23
4.1 chromeno[3’,2’:3,4]pyrido[1,2a][1,3]benzimidazole
Chromophore的衍生化合物2及化合物3 23
4.2化合物2(3)的光學性質以及氧化還原電位 25
第五章 結論 33
參考文獻 34
附錄
附圖1 化合物2之ESI-Mass圖譜 36
附圖2 化合物2之1H-NMR圖譜 37
附圖3 化合物2之FT-IR圖譜 38
附圖4 化合物3之ESI-Mass圖譜 39
附圖5 化合物3之1H-NMR圖譜 40
附圖6 化合物3之FT-IR圖譜 41
論文參考文獻:[1]. K. C. Nicolaou, Scott A. Snyder, Tamsyn Montagnon, and Georgios Vassilikogiannakis. “The Diels-Alder Reaction in Total Synthesis,” Angew. Chem. Int. Ed, 41, pp.1668-1698, 2002.
[2]. F. A. Bottino, G. Di Pasquale, A. Pollicino, Antonino Recca, and D. T. Clark. “Synthesis of 2-(2-hydroxyphenyl)-2H-benzotriazole monomers and studies of the surface photostabilization of the related copolymers,” Macromolecules, 23, pp.2662-2666, 1990
[3]. Lai. Y-H. , "Grignard Reagents from Chemically Activated Magnesium," Synthesis, 8, pp.585-604, 1981.
[4]. K. C. Nicolaou, Paul G. Bulger, and David Sarlah, “Palladium-Catalyzed Cross-Coupling Reactions in Total Synthesis,” Angew. Chem. Int. Ed, 44, pp.4442–4489, 2005.
[5]. Alec D. Lebsack, J. T. Link, Larry E. Overman, and Brian A. Stearns, “Enantioselective Total Synthesis of Quadrigemine C and Psycholeine,” J. Am. Chem. Soc, 124 , pp.9008-9009, 2002.
[6]. R. Rossi, A. Carpita and M. Grazia Quirici, “Dienic sex pheromones: Stereoselective syntheses of (7E,9Z)-7,9-dodecadien-1-yl acetate, (E)-9,11- dodecadien-1-yl acetate, and (9Z,11E)-9,11-tetradecadien-1-yl acetate by palladium-catalyzed reactions,” Tetrahedron , 37, pp.2617-23, 1981.
[7]. K. C. Nicolaou, C. A. Veale, S. E. Webber, H. Katerinopoulos, “Stereocontrolled total synthesis of lipoxins A, ” J. Am. Chem. Soc, 107, pp.7515-18, 1985.
[8]. D. M. X. Donnelly and M. J. Meegan, in ComprehensiveHeterocyclic Chemistry, 4, pp.657–712, 1984.
[9]. P. Cagniant and D. Cagniant, “Recent advances in the chemistry of benzo[b]furan and its. derivatives. Part I: Occurence and synthesis,” Adv. Heterocycl. Chem, 18, pp. 337–482, 1975.
[10]. Sheen. W-S, Tsai. I-L, Teng. C-M. and Chen. I-S, “Nor-neolignan and phenyl propanoid from Zanthoxylum ailanthoides,” Phytochemistry, 36, pp. 213–215, 1994.
[11]. Tsai. I-L, Hsien. C-F and Duh. C-Y, “Additional cytotoxic neolignans from Persea obovatifolia ,” Phytochemistry, 48, pp.1371–1375, 1998.
[12]. T. Iwasaki, K. Kondo, T. Kuroda, Y. Moritani, S. Yamagata, M. Sugiura, H. Kikkawa, O. Kaminuma and K. Ikezawa, “Novel Selective PDE IV Inhibitors as Antiasthmatic Agents. Synthesis and Biological Activities of a Series of 1-Aryl -2,3-bis(hydroxymethyl)naphthalene Lignans,” J. Med. Chem. 39 , pp. 2696– 2704, 1996.
[13]. M. Gordaliza, G. T. Faircloth, M. Castro, J.M. Corral, M. Lopez-Vazquez and A.S. Feliciano, “Immunosuppressive Cyclolignans,” J. Med. Chem. 39 , pp. 2865– 2868, 1996.
[14]. Lu. H. and Liu.G.-T, “Anti-oxidant activity of dibenzocyclooctene lignans isolated from Schisandraceae,” Planta Med. 58, pp. 311–313, 1992.
[15]. Kao. C-L, Chern. J-W, “A convenient synthesis of naturally occurring benzofuran ailanthoidol,” Tetrahedron Lett, 42, pp.1111-1113, 2001.
[16]. Alois Fürstner, Eike K. Heilmann, and Paul W. Davies, “Total Synthesis of the Antibiotic Erypoegin H and Cognates by a PtCl2-Catalyzed Cycloisomerization Reaction,” Angew. Chem. Int .Ed, 46, pp.1–5, 2007.
[17]. H. Tanaka, T. Oh-Uchi, H. Etoh, M. Sako, M. Sato, T. Fukai, Y. Tateishi, “An arylbenzofuran and four isoflavonoids from the roots of Erythrina poeppigiana,”
Phytochemistry, 63, pp.597-602, 2003.
[18]. H. Tanaka, M. Sato, S. Fujiwara, M. Hirata, H. Etoh, H. Takeuchi, “Antibacterial activity of isoflavonoids isolated from Erythrina variegata against methicillin- resistant Staphylococcus aureus,” Lett. Appl. Microbiol, 35, pp.494-498, 2002.
[19]. D. R. Howlett, F. Godifrey, A.E. Perry, J. E. Swatton, K. H. Jennings, S. J. Wood, R. E. Markwell, “Inhibition of fibril formation in β-amyroid peptide by a novel series of benzofurans,” Biochem. J, 340, pp.283-289, 1999.
[20]. I. Hayakawa, R. Shioya, T. Agatsuma, H. Furukawa and Y. Suganoa, “Thienopyridine and benzofuran derivatives as potent anti-tumor agents possessing differents tructure–activity relationships,” Bioorg. Med. Chem. Let, 14, pp.3411–3414, 2004.
[21]. Huang. H-C, T.S. Chamberlain, K. Seibert, C. M. Koboldt, P.C. Isakson, D.B. Reitz, “Diaryl indenes and Benzofurans: novel classes of potent and selective cyclooxygenase-2-inhibitors,” Bioorg. Med. Chem. Let, 5, pp.2377-2380, 1995
[22]. C. Hansch, W. Saltonstall, J. Settle, “Catalytic Synthesis of Heterocycles.1 III. Benzofuran,” J. Am. Chem. Soc, 71, pp.943-944, 1949.
[23]. A.R. Katritzky, Y. Ji, Y. Fang, I. Prakash, “Novel syntheses of 2,3-disubstituted benzofurans,” J. Org. Chem, 66, pp.5613–5615, 2001.
[24]. G. Dyker, “Palladium-catalyzed carbon-hydrogen activation at methoxy groups for cross-coupling reactions: a new approach to substituted benzo[b]furans,” J. Org. Chem, 58, pp.6426–6428, 1993.
[25]. R.C. Larock, E.K. Yum, M.J. Doty, K.K.C. Sham, “Synthesis of Aromatic Heterocycles via Palladium-Catalyzed Annulation of Internal Alkynes”, J. Org. Chem, 60, pp.3270–3271, 1995.
[26]. A. Arcadi, S. Cacchi, M. DelRosario, G. Fabrizi, F. Marinelli, “Palladium-
Catalyzed Reaction of o-Ethynylphenols , o-((Trimethylsilyl)ethynyl) -phenyl Acetates , and o-Alkynylphenols with Unsaturated Triflates or Halides: A Route to 2-Substituted-, 2,3-Disubstituted-, and 2-Substituted-3-acylbenzo[b]furans,” J. Org. Chem, 61, pp.9280–9288, 1996.
[27]. M. Inoue, M. W. Carson, A. J. Frontier, S. J. Danishefsky, “Total Synthesis and Determination of the Absolute Configuration of Frondosin B,” J. Am. Chem. Soc, 123, pp.1878–1889, 2001.
[28]. B. L. Flynn, E. Hamel, M. K. Jung, “One-Pot Synthesis of Benzo[b]furan and Indole Inhibitors of Tubulin Polymerization,” J. Med. Chem, 45, pp.2670–2673, 2002.
[29]. Nitya G. Kundu, Manojit Pal, Jyan S. Mahanty and Mahuya De, “Palladium- catalysed heteroannulation with acetylenic compounds:synthesis of benzofurans,” J. Chem. Soc., Perkin Trans, 1, pp.2815-2820, 1997.
[30]. Dai. W-M, Lai. K-W, “Solid phase synthesis of 2-substituted benzofurans via the palladium-catalysed heteroannulation of acetylenes,” Tetrahedron Lett, 43, pp.9377–9380, 2002.
[31]. M. Paletal, “Pd/C mediated synthesis of 2-substituted benzo[b]furans nitrobenzo[b]furans in water,” Tetrahedron Lett, 44, pp.8221–8225, 2003.
[32]. P.W. Collins, S.W. Kramer, A.F. Gasiecki, R. M. Weier, P. H. Jones, G. W. Gullikson, R.G.. Bianchi, R.F. Bauer,“Synthesis and gastrointestinal pharmacology of a 3E,5Z diene analog of misoprostol,” J. Med. Chem, 30 pp.193-197, 1987.

[1]. M. Grätzel, “Photoelectrochemical cells,” Nature, 414, pp.338-344, 2001.
[2]. 王釿鋊, “染料半導體光電池”, 中技社通訊, 41, 5, 2002.
[3]. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, “Conversion of Light to Electricity by cis-X2Bis (2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes,” J. Am. Chem. Soc, 115, pp.6382-6390, 1993.
[4]. M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeerudin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar cells,” J. Am. Chem. Soc, 123, pp.1613-1624, 2001.
[5]. T. Horiuchi, H. Miura, S. Uchida, “Highly-efficient metal-free organic dyes for dye-sensitized solar cells,” Chem. Commun, pp.3036-3037, 2003.
[6]. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Grätzel, “A stable Quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte,” Nature materials, 2, pp.402-407, 2003.
[7]. N. Robertson, “Optimizing Dyes for Dye-Sensitized Solar Cells,” Angew. Chem. Int. Ed , 45, pp. 2338-2345, 2006.
[8]. E. Roussakis, F. Liepouri, A.P. Nifli, E.Castanas, T.G. Deligeorgiev, H.E. Katerinopoulos, “ICPBC and C12-ICPBC: Two new red emitting, fluorescent Ca2+ indicators excited with visible light,” Cell Calcium, 39, pp. 3-11, 2006.
[9]. O.S. Wolfbets, E. Koller, and P. Hochemuth. “The usually strong effect of a 4-cyano group upon electronic spectra and dissociation constants of 3-substituted 7-hydroxycoumarins,” Bulletin of the Chemistry Society of Japan, 58, pp.731-734,1985
[10]. G. P. Smestad, M. Gratzel, “Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter,” J. Chem. Educ, 75, pp.752-756, 1998.

[11]. M. Velusamy, K.R.J. Thomas, J.T. Lin, Y.C. Hsu, K.C. Ho,“Organic Dyes Incorporating Low-Band-Gap Chromophores for Dye-Sensitized Solar Cells,” Org. Let, 7 , pp. 1899-1902, 2005.
[12]. K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, “Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes,” Sol Energy Mater Sol Cells, 77, pp.89-103, 2003.
[13]. K. Hara, T. Sato, R. Katoh, A . Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, “Molecular Design of Coumarin Dyes for Efficient Dye-Sensitized Solar Cells,” J. Phys .Chem. B , 107, pp. 597-606, 2003.
[14]. K. Hara, M. Kurashige, Y. Dan-oh, C. Kasada, A. Shinpo, S. Suga, K. Sayama, H. Arakawa, “Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells,” New J. Chem, 27, pp.783-785, 2003.
[15]. K. Hara, M. Kurashige, S. Ito, A. Shinpo, S. Suga, K. Sayama, H. Arakawa, “Novel polyene dyes for highly efficient dye-sensitized solar cells,” Chem. Commun, pp. 252-253, 2003.
[16]. S. Yanagida, “Recent research progress of dye-sensitized solar cells in Japan,” C. R. Chimie, 9 ,pp.597-604, 2006.
[17]. A Gómez-Hens, and M. P Aguilar-Caballos, “Long-wavelength fluorophores
new trends in their analytical use,” Trends in Analytical Chemistry, 23, pp.127-136, 2004.
[18]. H. Scheuermann, W. Mach, D.Augart, U. S. Patent, 3880869, 1975.
[19]. M.Peter, U. S. Patent, 4550171, 1985.
[20]. M. Matsui, Y. Hashimoto, K. Funabiki, Jin. Ji-Ye, T. Yoshida and H. Minoura, “Application of near-infrared absorbing heptamethine cyanine dyes as sensitizers for zinc oxide solar cell,” Synthetic Metals, 148, pp.147–153, 2005.
[21]. Fundamentals Applications, John Wiley & Sons, New York, 1980, p.701.
論文全文使用權限:不同意授權