現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:以Benzimidazol iminocoumarin為模板合成近紅外光譜螢光染劑 [以論文名稱查詢館藏系統]
論文英文名稱:Synthesis and phtochemrilation novel benzimidazol iminocoumarin derivatives in the red region of the spectrum [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:生物科技研究所
畢業學年度:97
出版年度:98
中文姓名:彭懷慈
英文姓名:Huai-Chi Peng
研究生學號:96688021
學位類別:碩士
語文別:中文
口試日期:2009-06-22
論文頁數:104
指導教授中文名:黃聲東
口試委員中文名:林俊茂;郭憲壽
中文關鍵詞:長波長螢光劑Benzimidazol iminocoumarin量子效率
英文關鍵詞:near-fluorophoresbenzimidazole iminocoumarinquantum yield
論文中文摘要:由近幾年來所發表的文章可以觀察到,科學家對於長波長螢光劑運用於生理活體即時追蹤分析深感興趣。螢光分子螢光波長位於近紅外光區域(λem> 600nm)的最大優點即為能讓光滲透到活體組織內,不受活體自發現螢光干擾,增加靈敏性有效提升活體的即時影像監控。因此開發新型近紅外光螢光分子將有助於生物影像研究。我們利用Benzimidazol iminocoumarin 當起始物模版合成一系列的衍生物且探討他們的光學性質研究。我們所合成的一系列Benzimidazol iminocoumarin衍生物具有大於600nm的螢光釋放波長,符合長波長螢光劑的螢光釋放波長範圍;另外,這些化合物的螢光量子效率約為10~90%。
論文英文摘要:There are growing interests in employing near-IR fluorophores in various analytical applications such as immunoassay, liquid chromatography(LC), capillary elecrophoresis(CE) and especially the real time in vivo biological imaging. Photo penetration into living tissue is highly dependent on the absorption and scattering properties of tissue components. The near-infrared region of the spectrum offers certain advantages for photon penetration, and both organic and inorganic fluorescence contrast agents are now available for chemical conjugation to targeting molecules. Furthermore, employing NIR fluorophores in biological imaging significantly reduced the back ground signal due to the lowest autoabsorption and atuofluorescence of biolmolecule in the long-wavelength region of spectrum. We employed benzimidazole iminocoumarin as the synthetic synthon to synthesized a series of derivations and studied their photophysical properties. The benznmidazol iminocoumarine derivatives synthesized rein exhibited emissions spectra in the red or NIR region. The fluorescence quantum yield ranges from 10 to 90%.
論文目次:摘要 . i
ABSTRACT ii
誌謝 iii
第一章 前言 .7
第二章 文獻回顧與探討 ..8
2.1 文獻架構 ..............................................8
2.2 發光的方式 ..........................................9
2.2.1 化學發光 ......................................9
2.2.2 物理發光-螢光與磷光發光原理 10
2.3 螢光的定義及介紹............................. 11
2.4 自體螢光 ............................................ 12
2.4.1 生物發光之例子-水母 ................ 12
2.4.2 生物組織中發光物質 ................. 15
2.5 次級螢光 ............................................ 17
2.5.1 生物檢測與醫療影像 ................. 18
2.5.2 自體螢光與次級螢光應用於活體內檢測的缺陷 .. 20
2.6 長波長螢光染劑的開發 ...................... 20
2.6.1 長波長螢光劑的應用-生物晶片(microarray) ..... 21
2.6.2 長波長螢光劑的應用-免疫分析(immunoassay labels). 22
2.6.3 長波長螢光劑的應用-利用螢光共振能量轉換
偵測Caspase 3活性 23
2.6.4 長波長螢光染劑的不足 ............. 25
2.7 近紅外光(near-IR)螢光染劑 .......... 26
2.7.1 近紅外(near-IR)光譜分析技術的優勢 ..... 26
2
2.7.2 近紅外(near-IR)光譜儀的開發........ 27
2.7.3 近紅外光螢光染劑之應用-偵測過氧化物 ........... 30
2.7.4 近紅外光螢光染劑之應用-偵測與腫瘤相關的蛋白.活性 . 34
2.7.5 近紅外光螢光染劑之應用-偵測一氧化氮 ...... 36
2.7.6 現今已使用之長波長螢光劑 ...... 37
第三章 研究動機與目的 ................................ 40
3.1 研究目的 ............................................ 40
3.2 研究動機 ................. 40
第四章 實驗方法與設備 .................................. 43
4.1 儀器與詴藥 ......................................... 43
4.1.1 實驗儀器 ..................................... 43
4.1.2 實驗試藥44
4.2 實驗方法與流程 ................................... 45
4.2.1 Synthesis of 9-Dibutylamino-5-imino-5H-7-oxa-4b,13-diaza-indeno[2,1-a]anthracene-6-carbonitrile 1b 45
4.2.2 Synthesis of 2a及2b........................ 46
4.2.3 Synthesis of 3a及3b................................ 48
4.2.4 Synthesis of 4a及4b.................... 49
4.2.6 紫外光/可見光光譜儀(UV-visible spectra)測試 . 50
4.2.7 螢光光譜儀(Fluorescence Spectrometer)測試 50
4.2.8 量子效率(Quantum yield,.)之量測 .... 50
第五章 結果與討論 ........ 52
5.1 化合物全合成 .................................... 52
5.2 化合物1、2、3、4的光學性質 ........ 54
3
5.2.1 化合物1a、2a、3a、4a在DMSO溶劑下的紫外光/可見光光譜儀(UV-visible spectra)測試 ..................... 55
5.2.2 化合物1a、2a、3a、4a在DMSO溶劑下的螢光光譜儀(Fluorescence Spectrometer)測試 ............... 56
5.2.3 化合物1b、2b、3b、4b在DMSO溶劑下的紫外光/可見光光譜儀(UV-visible spectra)測試 ...................... 57
5.2.4 化合物1b、2b、3b、4b在DMSO溶劑下的螢光光譜儀(Fluorescence Spectrometer)測試 ................. 58
5.2.5 化合物1a、2a、3a、4a在DMSO溶劑下的光學性質 ...... 59
5.2.6 化合物在不同溶劑下的紫外光/可見光光譜儀(UV-visible spectra)及螢光光譜儀(Fluorescence Spectrometer)測試 .62
5.2.7 化合物1a、2a、3a、4a在不同溶劑下的光學性質 ..... 68
第六章 結論 ....... 71
參參考文獻 ... 72
論文參考文獻:[1] Arnaud C. Peeking Into Live Cells. Chemical & engineering news. 2007;85(23):13-7.
[2] Marcus SL. Photodynamic therapy of human cancer. Proceedings of the IEEE. 1992;80(6):869-89.
[3] Chen Z, Woodburn KW, Shi C, Adelman DC, Rogers C, Simon DI. Photodynamic Therapy With Motexafin Lutetium Induces Redox-Sensitive Apoptosis of Vascular Cells. Arterioscler Thromb Vasc Biol. 2001;21(5):759-64.
[4] Tong AK, Zengmin L, Jingyue J. Combinatorial fluorescence energy transfer tags: new molecular tools for genomics applications. Quantum Electronics, IEEE Journal of. 2002;38(2):110-21.
[5] Hintersteiner M, Enz A, Frey P, Jaton A, Kinzy W, Kneuer R, et al. In vivo detection of amyloid-bold beta deposits by near-infrared imaging using an oxazine-derivative probe. Nature Biotechnology. 2005;23:577-83.
[6] 徐敘瑢. 光電材料與顯示技術. 2004.
[7] Boyle R. New experiments concerning the relationship between light and air (in shining wood and fish). Phil Trans.2:581–600.
[8] Basdevant JL, Dalibard J. The Quantum Mechanics Solver: How to apply quantum theory to modern physics. The Stokes Shift. Berlin: Springer-Verlag 2000:4–5.
[9] Shimomura O, Johnson F, Saiga Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. Journal of Cellular and Comparative Physiology. 1962;59(3):223-39.
[10] Prasher D, Eckenrode V, WADE W, Prendergast F, Cormier M. Primary structure of the Aequorea victoria green-fluorescent protein. Gene(Amsterdam). 1992;111(2):229-33.
[11] Heim R, Prasher D, Tsien R. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proceedings of the National Academy of Sciences. 1994;91(26):12501-4.
[12] Shimomura O. Structure of the chromophore of Aequorea green fluorescent protein. FEBS Lett. 1979;104(2):220-2.
73
[13] Cody C, Prasher D, Westler W, Prendergast F, Ward W. Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry. 1993;32(5):1212-8.
[14] Tsien R. The green fluorescent protein. Annual review of biochemistry. 1998;67(1):509-44.
[15] Livet J, Weissman T, Kang H, Draft R, Lu J, Bennis R, et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. nature. 2007;450(7166):56-62.
[16] Cell B. Assessment of fluorochromes for cellular structure and function studies by flow cytometry. Biol Cell. 1993;78:1-13.
[17] Wolfbeis O. The fluorescence of organic natural products: Wiley 1985.
[18] Teale F, Weber G. Ultraviolet fluorescence of the aromatic amino acids. Biochemical Journal. 1957;65(3):476.
[19] Waggoner A. Covalent labeling of proteins and nucleic acids with fluorophores. Methods in enzymology. 1995;246:362.
[20] Johnson I. Review: Fluorescent probes for living cells. The Histochemical Journal. 1998;30(3):123-40.
[21] Boonacker E, Van Noorden C. Enzyme cytochemical techniques for metabolic mapping in living cells, with special reference to proteolysis. Journal of Histochemistry and Cytochemistry. 2001;49(12):1473.
[22] Beechem J, Brand L. Time-resolved fluorescence of proteins. Annual review of biochemistry. 1985;54(1):43-71.
[23] Sapsford K, Berti L, Medintz I. Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. ChemInform. 2006;37(43).
[24] Marme N, Knemeyer J, Wolfrum J, Sauer M. Highly sensitive protease assay using fluorescence quenching of peptide probes based on photoinduced electron transfer. Angewandte chemie-international edition in english. 2004;43(29):3798-801.
[25] Zhang J, Campbell R, Ting A, Tsien R. Creating new fluorescent probes for cell biology. Nature Reviews Molecular Cell Biology. 2002;3(12):906-18.
[26] Weber G. Intramolecular transfer of electronic energy in dihydrodiphosphopyridine nucleotide. nature. 1957;180:1409.
[27] Bernard V. Molecular fluorescence: principles and applications. 2002.
74
[28] Whitby L. A new method for preparing flavin-adenine dinucleotide. Biochemical Journal. 1953;54(3):437.
[29] Arden-Jacob J, Frantzeskos J, Kemnitzer N, Zilles A, Drexhage K. New fluorescent markers for the red region. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2001;57(11):2271-83.
[30] Steinberg D. Clinical trials of antioxidants in atherosclerosis: are we doing the right thing? Lancet. 1995;346(8966):36-7.
[31] Bowry V, Ingold K. The Unexpected Role of Vitamin E ([alpha]-Tocopherol) in the Peroxidation of Human Low-Density Lipoprotein1. Acc Chem Res. 1999;32(1):27-34.
[32] Montine T, Neely M, Quinn J, Beal M, Markesbery W, Roberts L, et al. Lipid peroxidation in aging brain and Alzheimer’s disease. Free Radical Biology and Medicine. 2002;33(5):620-6.
[33] Barnham K, Masters C, Bush A. Neurodegenerative diseases and oxidative stress. 2004.
[34] Kagan V, Fabisiak J, Shvedova A, Tyurina Y, Tyurin V, Schor N, et al. Oxidative signaling pathway for externalization of plasma membrane phosphatidylserine during apoptosis. FEBS letters. 2000;477(1-2):1-7.
[35] Schuster D, Wang L, Van der Veen J. Photochemistry of ketones in solution. Part 75. Photodecarbonylation of cis-and trans-2, 7-dimethyl-3, 5-cycloheptadienones: applicability of orbital symmetry theory to photochemical cheletropic fragmentations. Journal of the American Chemical Society. 1985;107(24):7045-53.
[36] P Oleynik, Y Ishihara, Cosa G. Design and Synthesis of a BODIPY-r-Tocopherol Adduct for Use as an off/on fluorescent antioxidant indicator. j am chem soc. 2007;129:1842-3.
[37] Burton G, Ingold K. Vitamin E: application of the principles of physical organic chemistry to the exploration of its structure and function. Accounts of Chemical Research. 1986;19(7):194-201.
[38] Niki E, Noguchi N. Dynamics of antioxidant action of vitamin E. Acc Chem Res. 2004;37(1):45-51.
[39] Johnson I, Kang H, Haugland R. Fluorescent membrane probes incorporating dipyrrometheneboron difluoride fluorophores. Analytical Biochemistry. 1991;198(2):228-37.
75
[40] Pearl Imager活體成像系統─靈敏,簡單,高效的螢光成像技術. ebiotech 生物通. 2008;37.
[41] Aubin J. Autofluorescence of viable cultured mammalian cells. Journal of Histochemistry and Cytochemistry. 1979;27(1):36-43.
[42] Ballou B, Ernst L, Waggoner A. Fluorescence imaging of tumors in vivo: Reporter Molecules for Molecular Imaging. Current medicinal chemistry. 2005;12(7):795-805.
[43] Cavaluzzi M, Borer P. Revised UV extinction coefficients for nucleoside-5'-monophosphates and unpaired DNA and RNA. Nucleic Acids Research. 2004;32(1):e13.
[44] Rahavendran S, Karnes H. Solid-state diode laser-induced fluorescence detection in high-performance liquid chromatography. Pharmaceutical research. 1993;10(3):328-34.
[45] Gomez-Hens A, Aguilar-Caballos M. Long-wavelength fluorophores new trends in their analytical use. Trends in Analytical Chemistry. 2004;23(2):127-36.
[46] 高逢時. 黑夜的精靈螢光體. 科學發展月刊. 2003;367:64-9.
[47] Wagenknecht H-A. Fluorescent DNA Base Modifications and Substitutes: Multiple Fluorophore Labeling and the DETEQ Concept. Annals of the New York Academy of Sciences. 2008;1130(Fluorescence Methods and Applications: Spectroscopy, Imaging, and Probes):122-30.
[48] Ratcliff R, Chang G, Kok T, Sloots T. Molecular diagnosis of medical viruses. Curr Issues Mol Biol. 2007;9:87-102.
[49] Wang H, Laughton C. Molecular modelling methods for prediction of sequence-selectivity in DNA recognition. Methods. 2007;42(2):196-203.
[50] 威健股份有限公司. Introduction of DNA Microarray 2008.
[51] 林修民. 抗體活染色與其在免疫臨床之應用; 1998.
[52] Cohen G. Caspases: the executioners of apoptosis. Biochemical Journal. 1997;326(1):1-16.
[53] Maxwell D, Chang Q, Zhang X, Barnett E, Piwnica-Worms D. An Improved Cell-Penetrating, Caspase-Activatable, Near-Infrared Fluorescent Peptide for Apoptosis Imaging. Bioconjugate Chemistry.821-46.
[54] Horiba J. A Guide to Recording Fluorescence Quantum Yields; 2002.
[55] Bennacef I, Tymciu S, Dhilly M, Lasne M, Debruyne D, Perrio C, et al. Synthesis
76
and biological evaluation of novel fluoro and iodo quinoline carboxamides as potential ligands of NK-3 receptors for in vivo imaging studies. Bioorganic & Medicinal Chemistry. 2004;12(16):4533-41.
[56] Gao X, Cui Y, Levenson RM, Chung LWK, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotech. 2004;22(8):969-76.
[57] Roussakis E, Liepouri F, Nifli A, Castanas E, Deligeorgiev T, Katerinopoulos H. ICPBC and C12-ICPBC: Two new red emitting, fluorescent Ca2+ indicators excited with visible light. Cell Calcium. 2006;39(1):3-11.
[58] Wu Y, Cai W, Chen X. Near-Infrared Fluorescence Imaging of Tumor Integrin αvβ3 Expression with Cy7-Labeled RGD Multimers. Molecular Imaging and Biology. 2006;8:223-36.
[59] Johnson JR, Fu N, Arunkumar E, Leevy WM, Gammon ST, Piwnica-Worms D, et al. Squaraine Rotaxanes: Superior Substitutes for Cy-5 in Molecular Probes for Near-Infrared Fluorescence Cell Imaging. Angewandte Chemie. 2007;46:5528-31.
[60] Lee D, Khaja S, Velasquez-Castano JC, Dasari M, Sun C, Petros J, et al. In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. Nat Mater. 2007;6(10):765-9.
[61] Fu M, Xiao Y, Qian X, Zhao D, Xu Y. A design concept of long-wavelength fluorescent analogs of rhodamine dyes: replacement of oxygen with silicon atom. Chemical Communications. 2008;2008(15):1780-2.
[62] Umezawa K, Nakamura Y, Makino H, Citterio D, Suzuki K. Bright, Color-Tunable Fluorescent Dyes in the Visible-Near-Infrared Region. Journal of the American Chemical Society. 2008;130(5):1550-1.
[63] Frangioni JV. in vivo near-infrared fluorescnece imaging. Current Opinion in Chemical Biology. 2003;7:626–34.
[64] Chatterjeea DK, Rufaihaha AJ, Zhanga Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials. 2008;29:937-43.
[65] Shimon G, David P-W. Molecular imaging strategies for drug discovery and development. Current Opinion in Chemical Biology. 2006;10:334–42.
[66] Umezawa K, Matsui A, Nakamura Y, Citterio D, Suzuki K. Bright, Color-Tunable Fluorescent Dyes in the Vis/NIR Region: Establishment of New" Tailor-Made" Multicolor Fluorophores Based on Borondipyrromethene. Chemistry (Weinheim an
77
der Bergstrasse, Germany). 2008.
[67] Bock G, Harnett S. Photosensitizing Compounds: Their Chemistry, Biology, and Clinical Use: John Wiley & Sons Inc 1989.
[68] Bashkatov AN, Genina EA, Kochubey VI, Tuchin VV. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. Joural of physics-london-d applied physics. 2005;38(15):2543.
[69] Keller P, Pampaloni F, Stelzer E. Life sciences require the third dimension. Current opinion in cell biology. 2006;18(1):117-24.
[70] 美嘉儀器股份有限公司. 活體內螢光成像系統. 2009 [cited 2009.06.26]; Available from: http://www.major.com.tw/p_4_1_ICE.htm
[71] Mattson M. Pathways towards and away from Alzheimer's disease. nature. 2004;430(7000):631-9.
[72] Winterbourn C. Reconciling the chemistry and biology of reactive oxygen species. Nature Chemical Biology. 2008;4(5):278-86.
[73] Robinson K, Janes M, Pehar M, Monette J, Ross M, Hagen T, et al. Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proceedings of the National Academy of Sciences. 2006;103(41):15038.
[74] Gao J, Xu K, Tang B, Yin L, Yang G, An L. Selective detection of superoxide anion radicals generated from macrophages by using a novel fluorescent probe. FEBS Journal. 2007;274(7):1725-33.
[75] Koide Y, Urano Y, Kenmoku S, Kojima H, Nagano T. Design and synthesis of fluorescent probes for selective detection of highly reactive oxygen species in mitochondria of living cells. J Am Chem Soc. 2007;129(34):10324-5.
[76] Maeda H, Yamamoto K, Kohno I, Hafsi L, Itoh N, Nakagawa S, et al. Design of a practical fluorescent probe for superoxide based on protection-deprotection chemistry of fluoresceins with benzenesulfonyl protecting groups. Chemistry-A European Journal. 2007;13(7).
[77] Shepherd J, Hilderbrand S, Waterman P, Heinecke J, Weissleder R, Libby P. A fluorescent probe for the detection of myeloperoxidase activity in atherosclerosis-associated macrophages. Chemistry & Biology. 2007;14(11):1221-31.
[78] Xu K, Liu X, Tang B, Yang G, Yang Y, An L. Design of a phosphinate-based fluorescent probe for superoxide detection in mouse peritoneal macrophages.
78
Chemistry-A European Journal. 2007;13(5).
[79] Zhao H, Joseph J, Fales H, Sokoloski E, Levine R, Vasquez-Vivar J, et al. Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence. Proceedings of the National Academy of Sciences. 2005;102(16):5727-32.
[80] Zielonka J, Vasquez-Vivar J, Kalyanaraman B. Detection of 2-hydroxyethidium in cellular systems: a unique marker product of superoxide and hydroethidine. 2007.
[81] Kundu K, Knight S, Willett N, Lee S, Taylor W, Murthy N. Hydrocyanines: a class of fluorescent sensors that can image reactive oxygen species in cell culture, tissue, and in vivo. Angewandte Chemie (International ed in English). 2009;48(2):299.
[82] K. K, K. H, N. T. Functional Near-Infrared Fluorescent Probes. chem asian j. 2008;3:506-15.
[83] Weissleder R, Tung C, Mahmood U, Bogdanov A. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nature Biotechnology. 1999;17:375-8.
[84] Dhar-Mascareno M, Carcamo J, Golde D. Hypoxia–reoxygenation-induced mitochondrial damage and apoptosis in human endothelial cells are inhibited by vitamin C. Free Radical Biology and Medicine. 2005;38(10):1311-22.
[85] Tony Y, Nicolas T, Sergio G. 螢光成像在生物分析中的應用. Curr Opin Microbiol. 2005;8(3):350-8.
[86] Sasaki E, Kojima H, Nishimatsu H, Urano Y, Kikuchi K, Hirata Y, et al. Highly sensitive near-infrared fluorescent probes for nitric oxide and their application to isolated organs. J Am Chem Soc. 2005;127(11):3684-5.
[87] Peng X, Draney D. Near-IR fluorescent dyes for biological applications. As published in LPI. 2004.
[88] Mishra A, Behera R, Behera P, Mishra B, Behera G. Cyanines during the 1990s: a review. Chem Rev. 2000;100(6):1973-2012.
[89] Mujumdar R, Ernst L, Mujumdar S, Lewis C, Waggoner A. Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. Bioconjugate Chemistry. 1993;4(2):105-11.
[90] Mujumdar S, Mujumdar R, Grant C, Waggoner A. Cyanine-labeling reagents: sulfobenzindocyanine succinimidyl esters. Bioconjugate Chem. 1996;7(3):356-62.
[91] Pham W, Lai W, Weissleder R, Tung C. High efficiency synthesis of a
79
bioconjugatable near-infrared fluorochrome. Bioconjugate Chem. 2003;14(5):1048-51.
[92] Devlin R, Dandliker W, Arrhenius P. US Patent 6,060,598 2000.
[93] Scheuermann HL, DT), Mach, Wolfgang (Hockenheim, DT), Augart, Dietmar (Ludwigshafen, DT), inventor BASF Aktiengesellschaft (Ludwigshafen, DT), assignee. Dyes of the benzopyrane series. United States. 1975.
[94] Maslov V, Nikitchenko V. Dual-band lasing of benzopyran dyes in the red region of the spectrum. Journal of Applied Spectroscopy. 2006;73(3):454-7.
[95] Matsui M, Hashimoto Y, Funabiki K, Jin J, Yoshida T, Minoura H. Application of near-infrared absorbing heptamethine cyanine dyes as sensitizers for zinc oxide solar cell. Synthetic Metals. 2005;148(2):147-53.
[96] Wolfbeis O, Koller E. The unusually strong effect of a 4-cyano group upon electronic spectra and dissociation constants of 3-substituted 7-hydroxycoumarins 1985.
[97] Kandavelu V, Huang H-S, Jian J-L, Yang TCK, Wang K-L, Huang S-T. Novel iminocoumarin dyes as photosensitizers for dye-sensitized solar cell. Solar Energy. 2009;83(4):574-81.
[98] Magde D, Brannon JH, Cremers TL, Olmsted J. Absolute luminescence yield of cresyl violet. A standard for the red. The Journal of Physical Chemistry. 1979;83(6):696-9.
[99] Seybold P, Gouterman M. Porphyrins XIII: fluorescence spectra and quantum yields. J Mol Spectrosc. 1969;31(1).
[100] Du H, Fuh R-CA, Li J, Corkan LA, Lindsey JS. PhotochemCAD: A Computer-Aided Design and Research Tool in Photochemistry. Photochemistry and Photobiology. 1998;68(2):141-2.
[101] Raju B. Photophysical Properties of Ground-State Twisted Bicoumarins? J Phys Chem A. 1997;101(6):981-7.
論文全文使用權限:同意授權於2011-07-17起公開