現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:以分子動態模擬探討來自Aβ上GVVIA和MVGGVV寡聚體的結構穩定性和聚集特性 [以論文名稱查詢館藏系統]
論文英文名稱:Molecular Dynamics Simulations to Investigate the Structural Stability and Aggregation Behavior of the GGVVIA and MVGGVV Oligomers Derived from Amyloid β Peptide [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:生物科技研究所
畢業學年度:97
出版年度:98
中文姓名:張量凱
英文姓名:Liang-Kai Chang
研究生學號:96688025
學位類別:碩士
語文別:英文
口試日期:2009-07-28
論文頁數:104
指導教授中文名:劉宣良
口試委員中文名:黃志宏;林忻怡;蔡偉博
中文關鍵詞:神經退化性疾病阿茲海默症帕金森氏症亨丁頓舞蹈症類澱粉β胜肽立體拉鍊分子動態模擬類澱粉纖維
英文關鍵詞:Neurodegenerative diseasesAlzheimer’s diseaseParkinson’s diseaseHuntington’s diseasesamyloid-β peptidesteric zippermolecular dynamics (MD) simulationamyloid fibril
論文中文摘要:許多神經退化性疾病,例如阿茲海默症、帕金森氏症和亨丁頓舞蹈症都是由不同的胜肽聚集成纖維所造成。最近研究已將位於Aβ胜肽C端疏水區域的GGVVIA和MVGGVV的結構解出,且發現在兩個摺板間會緊密的互補而形成無水介面,稱之為“立體拉鍊“。在本文中,利用不同組別的分子動態模擬,於水的環境中研究不同大小規模的GGVVIA和MVGGVV寡聚體的結構穩定性和聚集特性。在GGVVIA和MVGGVV寡聚體的實驗結果顯示,隨著組別中β-strand的增加,也會造成結構穩定性的增加。接著比較SH1模型和SH2模型的差異,雙層β-sheet模型的結構穩定性高於單層β-sheet模型,這項結果指出多了額外的β-sheet在維持結構的穩定性是必要的。我們進一步推測SH2-ST2和SH2-ST4分別為GGVVIA和MVGGVV寡聚體的最小成核點。我們模擬結果顯示,在單層的GGVVIA和MVGGVV寡聚體中,疏水作用力扮演重要的角色以維持相鄰β-strand之間的穩定性。在相鄰的β-sheet間,疏水立體拉鍊在GGVVIA寡聚體中是由側鏈V3、V4和I5形成,而側鏈的疏水作用力對維持立體拉鍊扮演重要的角色。在MVGGVV寡聚體中,疏水立體拉鍊使相鄰的β-sheet能藉由疏水側鏈M1、V2、V5和V6緊密的結合在一起。在GGVVIA寡聚體中,將側鏈V3、V4和I5分別突變成Glycine,會直接導致相鄰β-strand之間的疏水作用力消失和破壞相鄰β-sheet間的疏水立體拉鍊。相同地, MVGGVV寡聚體的突變實結果顯示,突變組M1G、V2G、V5G和V6G會直接拉長相鄰β-strand間的距離且破壞疏水立體拉鍊。總結來說,我們的模擬結果提供詳細的原子尺度資訊來幫助了解GGVVIA和MVGGVV寡聚體的聚集特性。這結果可能可以作為設計新的抑制劑來防止Aβ胜肽進行纖維化。
論文英文摘要:Several neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, and Huntington’s diseases, are associated with amyloid fibrils formed by different polypeptides. Recently, the atomic structure of the amyloid-forming peptides GGVVIA and MVGGVV from the C-terminal hydrophobic segment of amyloid-β (Aβ) peptide has been determined and revealed a dry, tightly self-complementing structure between two β-sheets, termed as “steric zipper”. In this study, several all-atom molecular dynamics simulations with explicit water were conducted to investigate the structural stability and aggregation behavior of the GGVVIA and MVGGVV oligomers with various sizes. The results of both GGVVIA and MVGGVV oligomers showed that their structural stability increases with increasing the numbers of β-strands. Our results also showed that the two-sheet models exhibit higher structural stability than the one-sheet models, indicating that an extra β-sheet layer is necessary to stabilize the oligomers. We further suggested that the minimal nucleus seeds for GGVVIA and MVGGVV fibril formation could be SH2-ST2 and SH2-ST4 models, respectively. Our simulation results also revealed that the hydrophobic interactions between the adjacent β-strands within the same layer plays an important role in stabilizing both GGVVIA and MVGGVV oligomers. Between the two neighboring β-sheets, the hydrophobic steric zipper of GGVVIA formed via the side chains of V3, V4, and I5 plays a critical role in holding the hydrophobic steric zipper together. For the case of MVGGVV oligomers, the hydrophobic side chain of M1, V2, V5, and V6 also locks the hydrophobic steric zipper together between the two neighboring β-sheet layers. For GGVVIA oligomers, single glycine substitution at V3, V4, and I5 directly result in the loss of hydrophobic interactions between the adjacent β-strands and disrupt the hydrophobic steric zipper between these two β-sheets. Similarly, mutation simulations for MVGGVV showed that a single glycine residue substitution, M1G, V2G, V5G, and V6G, directly result in elongation between β-strands and disrupt the steric zipper between the two neighboring β-sheet layers. In summary, our simulation results provided detailed insights into understanding the aggregation behavior of the GGVVIA and MVGGVV oligomers in the atomic level. It may also be helpful for designing new inhibitors able to prevent the fibril formation of Aβ peptide.
論文目次:ABSTRACT i
ACKNOWLEDGEMENTS v
CONTENTS vi
Chapter 1 GENERAL INTRODUCTION 1
Chapter 2 LITERATURE REVIEW 3
2.1 Amyloidosis 3
2.1.1 Alzheimer’s Disease 4
2.1.2 Familiar Alzheimer’s Disease 7
2.2 Amyloid β-Peptide 10
2.2.1 Amyloid Precursor Protein 11
2.2.2 The Different between Aβ40 and Aβ42 13
2.2.3 The Important of C-terminus of Aβ 14
2.3. Steric Zipper 15
2.3.1 The Eight Classes of Steric Zipper 17
2.3.2 Steric Zipper of Amyloid-β Peptide 17
Chapter 3 MOLECULAR MODELING 21
3.1 Overview 21
3.2 Force Field 22
3.2.1 Functional Form of CVFF Force Filed 24
3.2.2 The Parameters in the Force Field 26
3.3 Minimization 31
3.3.1 Minimization Algorithms 33
3.4 Equilibration 35
3.5 Molecular Dynamics 36
3.5.1 Constraints During Dynamics Simulations 37
3.5.1.1 The NVE Ensemble 38
3.5.1.2 The NPT Ensemble 38
3.5.1.3 The NVT Ensemble 39
3.6 Structural Analysis 40
3.6.1 Definition of Interstrand and Intersheet Distance 40
3.6.2 Contact Definition 41
3.6.3 Twisting Angle 42
Chapter 4 Molecular Dynamics Simulations to Investigate the Structural Stability and Aggregation Behavior of the GGVVIA Oligomers derived from Amyloid β Peptide 43
4.1 Abstract 44
4.2 Introduction 45
4.3 Material and Methods 47
4.3.1 Model Systems 47
4.3.2 Simulation Protocol 48
4.3.3 Structural Analyses 50
4.4 Results and Discussion 51
4.4.1 The Structural Stability of the GGVVIA Oligomers with Various Sizes 51
4.4.2 The Roles of the Interstrand Hydrophobic Interactions and Backbone Hydrogen Bonds in Associating and Stabilizing the GGVVIA Oligomers 53
4.4.3 The Role of the Intersheet Hydrophobic Interactions in Associating and Stabilizing the GGVVIA Oligomers 55
4.4.4 The Effects of Mutants on the Structural Stability of the GGVVIA Oligomers 58
4.5 Biological Interpretations of This Study 61
4.6 References 63
Chapter 5 Computational Study on the Dynamics and Structural Stability of the Amyloid-β Peptide MVGGVV 67
5.1 Abstract 67
5.2 Introduction 68
5.3 Material and Methods 71
5.3.1 Model Systems 71
5.3.2 Simulation Protocol 73
5.3.3 Structural Analysis 74
5.4 Results and Discussion 74
5.4.1 The Structural Stability of the MVGGVV Oligomers with Various Sizes 74
5.4.2 The Roles of the Interstrand Hydrophobic Interactions in Associating and Stabilizing the MVGGVV Oligomers 76
5.4.3 The Role of the Intersheet Hydrophobic Interactions in Associating and Stabilizing the MVGGVV Oligomers 78
5.4.4 The Effects of Mutants on the Structural Stability of the MVGGVV Oligomers 79
5.4.5 Twisting β-Sheet 82
5.5 Conclusions 85
5.6 Reference 87
Chapter 6 GENERAL CONCLUSIONS 91
Chapter 7 GENERAL REFERENCES 93
論文參考文獻:(1)Ancolio, K.; Dumanchin, C.; Barelli, H.; Warter, J. M.; Brice, A.; Campion, D.; Frebourg, T. and Checler, F. Unusual phenotypic alteration of beta amyloid precursor protein (betaAPP) maturation by a new Val-715 --> Met betaAPP-770 mutation responsible for probable early-onset Alzheimer's disease. Proc. Natl. Acad. Sci. USA 1999, 96, 4119-4124.
(2)Arnold, S. E.; Hyman, B. T.; Flory, J.; Damasio, A. R. and Van Hoesen, G. W. The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer's disease. Cereb. Cortex 1991, 1, 103-116.
(3)Bernstein, S. L.; Wyttenbach, T.; Baumketner, A.; Shea, J. E.; Bitan, G.; Teplow, D. B. and Bowers, M. T. Amyloid beta-protein: monomer structure and early aggregation states of Abeta42 and its Pro19 alloform. J. Am. Chem. Soc. 2005, 127, 2075-2084.
(4)Borchelt, D. R.; Thinakaran, G.; Eckman, C. B.; Lee, M. K.; Davenport, F.; Ratovitsky, T.; Prada, C. M.; Kim, G.; Seekins, S. and Yager, D. Familial Alzheimer's disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo. Neuron 1996, 17, 1005-1013.
(5)Buxbaum, J. D.; Koo, E. H. and Greengard, P. Protein phosphorylation inhibits production of Alzheimer amyloid beta/A4 peptide. Proc. Natl. Acad. Sci. USA 1993, 90, 9195-9198.
(6)Campion, D.; Dumanchin, C.; Hannequin, D.; Dubois, B.; Belliard, S.; Puel, M.; Thomas-Anterion, C.; Michon, A.; Martin, C.; Charbonnier, F.; Raux, G.; Camuzat, A.; Penet, C.; Mesnage, V.; Martinez, M.; Clerget-Darpoux, F.; Brice, A. and Frebourg, T. Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am. J. Hum. Genet. 1999, 65, 664-670.
(7)Chapman, P. F.; Falinska, A. M.; Knevett, S. G. and Ramsay, M. F. Genes, models and Alzheimer's disease. Trends Genet. 2001, 17, 254-261.
(8)Citron, M.; Oltersdorf, T.; Haass, C.; McConlogue, L.; Hung, A. Y.; Seubert, P.; Vigo-Pelfrey, C.; Lieberburg, I. and Selkoe, D. J. Mutation of the beta-amyloid precursor protein in familial Alzheimer's disease increases beta-protein production. Nature 1992, 360, 672-674.
(9)Colombo, G.; Daidone, I.; Gazit, E.; Amadei, A. and Di Nola, A. Molecular dynamics simulation of the aggregation of the core-recognition motif of the islet amyloid polypeptide in explicit water. Proteins 2005, 59, 519-527.
(10)Cruts, M.; van Duijn, C. M.; Backhovens, H.; Van den Broeck, M.; Wehnert, A.; Serneels, S.; Sherrington, R.; Hutton, M.; Hardy, J.; St George-Hyslop, P. H.; Hofman, A. and Van Broeckhoven, C. Estimation of the genetic contribution of presenilin-1 and -2 mutations in a population-based study of presenile Alzheimer disease. Hum. Mol. Genet. 1998, 7, 43-51.
(11)Daidone, I.; Simona, F.; Roccatano, D.; Broglia, R. A.; Tiana, G.; Colombo, G. and Di Nola, A. Beta-hairpin conformation of fibrillogenic peptides: structure and alpha-beta transition mechanism revealed by molecular dynamics simulations. Proteins 2004, 57, 198-204.
(12)Duff, K.; Eckman, C.; Zehr, C.; Yu, X.; Prada, C. M.; Perez-tur, J.; Hutton, M.; Buee, L.; Harigaya, Y.; Yager, D.; Morgan, D.; Gordon, M. N.; Holcomb, L.; Refolo, L.; Zenk, B.; Hardy, J. and Younkin, S. Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature 1996, 383, 710-713.
(13)Finckh, U.; Muller-Thomsen, T.; Mann, U.; Eggers, C.; Marksteiner, J.; Meins, W.; Binetti, G.; Alberici, A.; Hock, C.; Nitsch, R. M. and Gal, A. High prevalence of pathogenic mutations in patients with early-onset dementia detected by sequence analyses of four different genes. Am. J. Hum. Genet. 2000, 66, 110-117.
(14)Geddes, A. J.; Parker, K. D.; Atkins, E. D. and Beighton, E. "Cross-beta" conformation in proteins. J. Mol. Biol. 1968, 32, 343-358.
(15)Glenner, G. G. and Wong, C. W. Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem. Biophys. Res. Commun. 1984, 122, 1131-1135.
(16)Gnanakaran, S.; Nussinov, R. and Garcia, A. E. Atomic-level description of amyloid beta-dimer formation. J. Am. Chem. Soc. 2006, 128, 2158-2159.
(17)Goedert, M.; Spillantini, M. G.; Cairns, N. J. and Crowther, R. A. Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron 1992, 8, 159-168.
(18)Golde, T. E.; Eckman, C. B. and Younkin, S. G. Biochemical detection of Abeta isoforms: implications for pathogenesis, diagnosis, and treatment of Alzheimer's disease. Biochim. Biophys. Acta. 2000, 1502, 172-187.
(19)Goodman, J. M. 1997. Chemical Applications of Molecular Modeling.
(20)Gravina, S. A.; Ho, L.; Eckman, C. B.; Long, K. E.; Otvos, L., Jr.; Younkin, L. H.; Suzuki, N. and Younkin, S. G. Amyloid beta protein (A beta) in Alzheimer's disease brain. Biochemical and immunocytochemical analysis with antibodies specific for forms ending at A beta 40 or A beta 42(43). J. Biol. Chem. 1995, 270, 7013-7016.
(21)Grundke-Iqbal, I.; Iqbal, K.; Quinlan, M.; Tung, Y. C.; Zaidi, M. S. and Wisniewski, H. M. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J. Biol. Chem. 1986, 261, 6084-6089.
(22)Gsponer, J.; Haberthur, U. and Caflisch, A. The role of side-chain interactions in the early steps of aggregation: Molecular dynamics simulations of an amyloid-forming peptide from the yeast prion Sup35. Proc. Natl. Acad. Sci. USA 2003, 100, 5154-5159.
(23)Haass, C.; Koo, E. H.; Mellon, A.; Hung, A. Y. and Selkoe, D. J. Targeting of cell-surface beta-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature 1992, 357, 500-503.
(24)Haass, C.; Schlossmacher, M. G.; Hung, A. Y.; Vigo-Pelfrey, C.; Mellon, A.; Ostaszewski, B. L.; Lieberburg, I.; Koo, E. H.; Schenk, D. and Teplow, D. B. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 1992.
(25)Harman, D. Alzheimer's disease: role of aging in pathogenesis. Ann. N. Y. Acad. Sci. 2002, 959, 384-395; discussion 463-385.
(26)Hartlage-Rubsamen, M.; Zeitschel, U.; Apelt, J.; Gartner, U.; Franke, H.; Stahl, T.; Gunther, A.; Schliebs, R.; Penkowa, M.; Bigl, V. and Rossner, S. Astrocytic expression of the Alzheimer's disease beta-secretase (BACE1) is stimulus-dependent. Glia. 2003, 41, 169-179.
(27)Hartley, D. M.; Walsh, D. M.; Ye, C. P.; Diehl, T.; Vasquez, S.; Vassilev, P. M.; Teplow, D. B. and Selkoe, D. J. Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J. Neurosci. 1999, 19, 8876-8884.
(28)Hendriks, L.; van Duijn, C. M.; Cras, P.; Cruts, M.; Van Hul, W.; van Harskamp, F.; Warren, A.; McInnis, M. G.; Antonarakis, S. E.; Martin, J. J. and et al. Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the beta-amyloid precursor protein gene. Nat. Genet. 1992, 1, 218-221.
(29)Hepler, R. W.; Grimm, K. M.; Nahas, D. D.; Breese, R.; Dodson, E. C.; Acton, P.; Keller, P. M.; Yeager, M.; Wang, H.; Shughrue, P.; Kinney, G. and Joyce, J. G. Solution state characterization of amyloid beta-derived diffusible ligands. Biochemistry 2006, 45, 15157-15167.
(30)Hou, L.; Shao, H.; Zhang, Y.; Li, H.; Menon, N. K.; Neuhaus, E. B.; Brewer, J. M.; Byeon, I. J.; Ray, D. G.; Vitek, M. P.; Iwashita, T.; Makula, R. A.; Przybyla, A. B. and Zagorski, M. G. Solution NMR studies of the A beta(1-40) and A beta(1-42) peptides establish that the Met35 oxidation state affects the mechanism of amyloid formation. J. Am. Chem. Soc. 2004, 126, 1992-2005.
(31)Janssen, J. C.; Beck, J. A.; Campbell, T. A.; Dickinson, A.; Fox, N. C.; Harvey, R. J.; Houlden, H.; Rossor, M. N. and Collinge, J. Early onset familial Alzheimer's disease: Mutation frequency in 31 families. Neurology 2003, 60, 235-239.
(32)Jarrett, J. T.; Berger, E. P. and Lansbury, P. T., Jr. The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry 1993, 32, 4693-4697.
(33)Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W. and Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926.
(34)Kheterpal, I.; Williams, A.; Murphy, C.; Bledsoe, B. and Wetzel, R. Structural features of the Abeta amyloid fibril elucidated by limited proteolysis. Biochemistry 2001, 40, 11757-11767.
(35)Kirkitadze, M. D.; Bitan, G. and Teplow, D. B. Paradigm shifts in Alzheimer's disease and other neurodegenerative disorders: the emerging role of oligomeric assemblies. J. Neurosci. Res. 2002, 69, 567-577.
(36)Kitaguchi, N.; Takahashi, Y.; Tokushima, Y.; Shiojiri, S. and Ito, H. Novel precursor of Alzheimer's disease amyloid protein shows protease inhibitory activity. Nature 1988, 331, 530-532.
(37)Klein, W. L.; Krafft, G. A. and Finch, C. E. Targeting small Abeta oligomers: the solution to an Alzheimer's disease conundrum? Trends Neurosci. 2001, 24, 219-224.
(38)Kopan, R. and Goate, A. A common enzyme connects notch signaling and Alzheimer's disease. Genes Dev. 2000, 14, 2799-2806.
(39)Kowall, N. W.; Beal, M. F.; Busciglio, J.; Duffy, L. K. and Yankner, B. A. An in vivo model for the neurodegenerative effects of beta amyloid and protection by substance P. Proc. Natl. Acad. Sci. USA 1991, 88, 7247-7251.
(40)Krafft, G. A. Perspectives on Amyloid and Alzheimer's Disease: A Critical Review. Annu. Rep. Med. Chem. 1993, 28, 49-49.
(41)Lambert, M. P.; Barlow, A. K.; Chromy, B. A.; Edwards, C.; Freed, R.; Liosatos, M.; Morgan, T. E.; Rozovsky, I.; Trommer, B.; Viola, K. L.; Wals, P.; Zhang, C.; Finch, C. E.; Krafft, G. A. and Klein, W. L. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 1998, 95, 6448-6453.
(42)Lazo, N. D.; Grant, M. A.; Condron, M. C.; Rigby, A. C. and Teplow, D. B. On the nucleation of amyloid beta-protein monomer folding. Protein Sci. 2005, 14, 1581-1596.
(43)Lesne, S.; Koh, M. T.; Kotilinek, L.; Kayed, R.; Glabe, C. G.; Yang, A.; Gallagher, M. and Ashe, K. H. A specific amyloid-beta protein assembly in the brain impairs memory. Nature 2006, 440, 352-357.
(44)Levy-Lahad, E.; Wasco, W.; Poorkaj, P.; Romano, D. M.; Oshima, J.; Pettingell, W. H.; Yu, C. E.; Jondro, P. D.; Schmidt, S. D.; Wang, K. and et al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 1995, 269, 973-977.
(45)Lim, K. H.; Collver, H. H.; Le, Y. T.; Nagchowdhuri, P. and Kenney, J. M. Characterizations of distinct amyloidogenic conformations of the Abeta (1-40) and (1-42) peptides. Biochem. Biophys. Res. Commun. 2007, 353, 443-449.
(46)Lin, H.; Bhatia, R. and Lal, R. Amyloid beta protein forms ion channels: implications for Alzheimer's disease pathophysiology. Faseb. J. 2001, 15, 2433-2444.
(47)Lopez de la Paz, M.; de Mori, G. M.; Serrano, L. and Colombo, G. Sequence dependence of amyloid fibril formation: insights from molecular dynamics simulations. J. Mol. Biol. 2005, 349, 583-596.
(48)Lopez de la Paz, M.; Lacroix, E.; Ramirez-Alvarado, M. and Serrano, L. Computer-aided design of beta-sheet peptides. J. Mol. Biol. 2001, 312, 229-246.
(49)Lowenberg, K. and Waggoner, R. W. FAMILIAL ORGANIC PSYCHOSIS (ALZHEIMER'S TYPE). J. Nerv. Ment. Dis. 1934, 80, 723.
(50)Ma, B. and Nussinov, R. Stabilities and conformations of Alzheimer's beta -amyloid peptide oligomers (Abeta 16-22, Abeta 16-35, and Abeta 10-35): Sequence effects. Proc. Natl. Acad. Sci. USA 2002, 99, 14126-14131.
(51)Martin, L. J.; Sisodia, S. S.; Koo, E. H.; Cork, L. C.; Dellovade, T. L.; Weidemann, A.; Beyreuther, K.; Masters, C. and Price, D. L. Amyloid precursor protein in aged nonhuman primates. Proc. Natl. Acad. Sci. USA 1991, 88, 1461-1465.
(52)Masters, C. L.; Multhaup, G.; Simms, G.; Pottgiesser, J.; Martins, R. N. and Beyreuther, K. Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer's disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO. J. 1985, 4, 2757-2763.
(53)Masters, C. L.; Simms, G.; Weinman, N. A.; Multhaup, G.; McDonald, B. L. and Beyreuther, K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. USA 1985, 82, 4245-4249.
(54)McGowan, E.; Pickford, F.; Kim, J.; Onstead, L.; Eriksen, J.; Yu, C.; Skipper, L.; Murphy, M. P.; Beard, J.; Das, P.; Jansen, K.; Delucia, M.; Lin, W. L.; Dolios, G.; Wang, R.; Eckman, C. B.; Dickson, D. W.; Hutton, M.; Hardy, J. and Golde, T. Abeta42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron 2005, 47, 191-199.
(55)Mikkonen, M.; Soininen, H.; Alafuzof, I. and Miettinen, R. Hippocampal plasticity in Alzheimer's disease. Rev. Neurosci. 2001, 12, 311-325.
(56)Mousseau, N. and Derreumaux, P. Exploring the early steps of amyloid peptide aggregation by computers. Acc. Chem. Res. 2005, 38, 885-891.
(57)Molecular Simulations Inc., San Diego. Reprinted with permission from InsightII modeling environment. Molecular Simulations Inc., San Diego. Release 2000, June 2000.
(58)Nelson, R.; Sawaya, M. R.; Balbirnie, M.; Madsen, A. O.; Riekel, C.; Grothe, R. and Eisenberg, D. Structure of the cross-beta spine of amyloid-like fibrils. Nature 2005, 435, 773-778.
(59)Neve, R. L.; McPhie, D. L. and Chen, Y. Alzheimer's disease: a dysfunction of the amyloid precursor protein(1). Brain Res. 2000, 886, 54-66.
(60)Nilsson, M. R. Techniques to study amyloid fibril formation in vitro. Methods (San Diego, Calif 2004, 34, 151-160.
(61)Nunan, J. and Small, D. H. Regulation of APP cleavage by alpha-, beta- and gamma-secretases. FEBS. Lett. 2000, 483, 6-10.
(62)Probst, A.; Langui, D.; Ipsen, S.; Robakis, N. and Ulrich, J. Deposition of beta/A4 protein along neuronal plasma membranes in diffuse senile plaques. Acta. Neuropathol. 1991, 83, 21-29.
(63)Probst, A.; Langui, D. and Ulrich, J. Alzheimer's disease: a description of the structural lesions. Brain Pathol. 1991, 1, 229-239.
(64)Roberson, E. D.; Scearce-Levie, K.; Palop, J. J.; Yan, F.; Cheng, I. H.; Wu, T.; Gerstein, H.; Yu, G. Q. and Mucke, L. Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer's disease mouse model. Science 2007, 316, 750-754.
(65)Rogaev, E. I.; Sherrington, R.; Rogaeva, E. A.; Levesque, G.; Ikeda, M.; Liang, Y.; Chi, H.; Lin, C.; Holman, K.; Tsuda, T. and et al. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature 1995, 376, 775-778.
(66)Roher, A. E.; Lowenson, J. D.; Clarke, S.; Woods, A. S.; Cotter, R. J.; Gowing, E. and Ball, M. J. beta-Amyloid-(1-42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease. Proc. Natl. Acad. Sci. USA 1993, 90, 10836-10840.
(67)Roner, S.; Lange-Dohna, C.; Zeitschel, U. and Perez-Polo, J. R. Alzheimer's disease [beta]-secretase BACE1 is not a neuron-specific enzyme. J. Neurochem. 2005, 92, 226-234.
(68)Sambamurti, K.; Greig, N. H. and Lahiri, D. K. Advances in the cellular and molecular biology of the beta-amyloid protein in Alzheimer's disease. Neuromolecular Med. 2002, 1, 1-31.
(69)Sawaya, M. R.; Sambashivan, S.; Nelson, R.; Ivanova, M. I.; Sievers, S. A.; Apostol, M. I.; Thompson, M. J.; Balbirnie, M.; Wiltzius, J. J.; McFarlane, H. T.; Madsen, A. O.; Riekel, C. and Eisenberg, D. Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 2007, 447, 453-457.
(70)Scheuner, D.; Eckman, C.; Jensen, M.; Song, X.; Citron, M.; Suzuki, N.; Bird, T. D.; Hardy, J.; Hutton, M.; Kukull, W.; Larson, E.; Levy-Lahad, E.; Viitanen, M.; Peskind, E.; Poorkaj, P.; Schellenberg, G.; Tanzi, R.; Wasco, W.; Lannfelt, L.; Selkoe, D. and Younkin, S. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nat. Med. 1996, 2, 864-870.
(71)Schottky, J. Uber prasenile eine eigenartige erkrankurg der hirnrinde. Allg. Z Psychiatr. 1932, 64, 146-148.
(72)Selkoe, D. J. The molecular pathology of Alzheimer's disease. Neuron 1991, 6, 487-498.
(73)Selkoe, D. J. Physiological production of the beta-amyloid protein and the mechanism of Alzheimer's disease. Trends Neurosci. 1993, 16, 403-409.
(74)Selkoe, D. J. The origins of Alzheimer disease: a is for amyloid. JAMA. 2000, 283, 1615-1617.
(75)Selkoe, D. J. Alzheimer's disease: genes, proteins, and therapy. Physiol. Rev. 2001, 81, 741-766.
(76)Seubert, P.; Vigo-Pelfrey, C.; Esch, F.; Lee, M.; Dovey, H.; Davis, D.; Sinha, S.; Schlossmacher, M.; Whaley, J.; Swindlehurst, C. and et al. Isolation and quantification of soluble Alzheimer's beta-peptide from biological fluids. Nature 1992, 359, 325-327.
(77)Sgourakis, N. G.; Yan, Y.; McCallum, S. A.; Wang, C. and Garcia, A. E. The Alzheimer's peptides Abeta40 and 42 adopt distinct conformations in water: a combined MD / NMR study. J. Mol. Biol. 2007, 368, 1448-1457.
(78)Shankar, G. M.; Li, S.; Mehta, T. H.; Garcia-Munoz, A.; Shepardson, N. E.; Smith, I.; Brett, F. M.; Farrell, M. A.; Rowan, M. J.; Lemere, C. A.; Regan, C. M.; Walsh, D. M.; Sabatini, B. L. and Selkoe, D. J. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat. Med. 2008, 14, 837-842.
(79)Shen, L.; Ji, H. F. and Zhang, H. Y. Why Is the C-terminus of Abeta(1-42) more unfolded than that of Abeta(1-40)? Clues from hydrophobic interaction. J. Phys. Chem. B. 2008, 112, 3164-3167.
(80)Sherrington, R.; Froelich, S.; Sorbi, S.; Campion, D.; Chi, H.; Rogaeva, E. A.; Levesque, G.; Rogaev, E. I.; Lin, C.; Liang, Y.; Ikeda, M.; Mar, L.; Brice, A.; Agid, Y.; Percy, M. E.; Clerget-Darpoux, F.; Piacentini, S.; Marcon, G.; Nacmias, B.; Amaducci, L.; Frebourg, T.; Lannfelt, L.; Rommens, J. M. and St George-Hyslop, P. H. Alzheimer's disease associated with mutations in presenilin 2 is rare and variably penetrant. Hum. Mol. Genet. 1996, 5, 985-988.
(81)Shoji, M.; Golde, T. E.; Ghiso, J.; Cheung, T. T.; Estus, S.; Shaffer, L. M.; Cai, X. D.; McKay, D. M.; Tintner, R.; Frangione, B. and et al. Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science 1992, 258, 126-129.
(82)Sisodia, S. S.; Koo, E. H.; Hoffman, P. N.; Perry, G. and Price, D. L. Identification and transport of full-length amyloid precursor proteins in rat peripheral nervous system. J. Neurosci. 1993, 13, 3136-3142.
(83)Suzuki, N.; Cheung, T. T.; Cai, X. D.; Odaka, A.; Otvos, L., Jr.; Eckman, C.; Golde, T. E. and Younkin, S. G. An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science 1994, 264, 1336-1340.
(84)Tanzi, R. E.; McClatchey, A. I.; Lamperti, E. D.; Villa-Komaroff, L.; Gusella, J. F. and Neve, R. L. Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer's disease. Nature 1988, 331, 528-530.
(85)Tartaglia, G. G.; Cavalli, A.; Pellarin, R. and Caflisch, A. Prediction of aggregation rate and aggregation-prone segments in polypeptide sequences. Protein Sci. 2005, 14, 2723-2734.
(86)Tekirian, T. L.; Saido, T. C.; Markesbery, W. R.; Russell, M. J.; Wekstein, D. R.; Patel, E. and Geddes, J. W. N-terminal heterogeneity of parenchymal and cerebrovascular Abeta deposits. J. Neuropathol. Exp. Neurol. 1998, 57, 76-94.
(87)Thirumalai, D.; Klimov, D. K. and Dima, R. I. Emerging ideas on the molecular basis of protein and peptide aggregation. Curr Opin Struct Biol 2003, 13, 146-159.
(88)Tsai, H. H.; Reches, M.; Tsai, C. J.; Gunasekaran, K.; Gazit, E. and Nussinov, R. Energy landscape of amyloidogenic peptide oligomerization by parallel-tempering molecular dynamics simulation: significant role of Asn ladder. Proc. Natl. Acad. Sci. USA 2005, 102, 8174-8179.
(89)Tsai, H. H.; Zanuy, D.; Haspel, N.; Gunasekaran, K.; Ma, B.; Tsai, C. J. and Nussinov, R. The stability and dynamics of the human calcitonin amyloid peptide DFNKF. Biophys. J. 2004, 87, 146-158.
(90)Urbanc, B.; Cruz, L.; Yun, S.; Buldyrev, S. V.; Bitan, G.; Teplow, D. B. and Stanley, H. E. In silico study of amyloid beta-protein folding and oligomerization. Proc. Natl. Acad. Sci. USA 2004, 101, 17345-17350.
(91)Wang, S. S.-S. and Good, T. A. An Overview of Alzheimer's Disease. J. Chin. Inst. Chem. Engrs. 2005, 35, 533-559.
(92)Williams, A. D.; Portelius, E.; Kheterpal, I.; Guo, J. T.; Cook, K. D.; Xu, Y. and Wetzel, R. Mapping abeta amyloid fibril secondary structure using scanning proline mutagenesis. J. Mol. Biol. 2004, 335, 833-842.
(93)Wisniewski, H. M.; Ghetti, B. and Terry, R. D. Neuritic (senile) plaques and filamentous changes in aged rhesus monkeys. J. Neuropathol. Exp. Neurol. 1973, 32, 566-584.
(94)Wurth, C.; Guimard, N. K. and Hecht, M. H. Mutations that reduce aggregation of the Alzheimer's Abeta42 peptide: an unbiased search for the sequence determinants of Abeta amyloidogenesis. J. Mol. Biol. 2002, 319, 1279-1290.
(95)Xia, W. Amyloid metabolism and secretases in Alzheimer's disease. Curr. Neurol. Neurosci. Rep. 2001, 1, 422-427.
(96)Yan, Y. and Wang, C. Abeta42 is more rigid than Abeta40 at the C terminus: implications for Abeta aggregation and toxicity. J. Mol. Biol. 2006, 364, 853-862.
(97)Yankner, B. A. Commentary and perspective on studies of beta amyloid neurotoxicity. Neurobiol. Aging 1992, 13, 615-616.
(98)Yun, S.; Urbanc, B.; Cruz, L.; Bitan, G.; Teplow, D. B. and Stanley, H. E. Role of electrostatic interactions in amyloid beta-protein (A beta) oligomer formation: a discrete molecular dynamics study. Biophys. J. 2007, 92, 4064-4077.
(99)Zanuy, D.; Haspel, N.; Tsai, H. H.; Ma, B.; Gunasekaran, K.; Wolfson, H. J. and Nussinov, R. Side chain interactions determine the amyloid organization: a single layer beta-sheet molecular structure of the calcitonin peptide segment 15-19. Phys. Biol. 2004, 1, 89-99.
(100)Zanuy, D. and Nussinov, R. The sequence dependence of fiber organization. A comparative molecular dynamics study of the islet amyloid polypeptide segments 22-27 and 22-29. J. Mol. Biol. 2003, 329, 565-584.
(101)Zanuy, D.; Porat, Y.; Gazit, E. and Nussinov, R. Peptide sequence and amyloid formation; molecular simulations and experimental study of a human islet amyloid polypeptide fragment and its analogs. Structure 2004, 12, 439-455.
(102)Zheng, H. and Koo, E. H. The amyloid precursor protein: beyond amyloid. Mol. Neurodegener. 2006, 1, 5.
(103)Zheng, J.; Jang, H.; Ma, B.; Tsai, C. J. and Nussinov, R. Modeling the Alzheimer Abeta17-42 fibril architecture: tight intermolecular sheet-sheet association and intramolecular hydrated cavities. Biophys. J. 2007, 93, 3046-3057.
(104)Zheng, J.; Ma, B.; Tsai, C. J. and Nussinov, R. Structural stability and dynamics of an amyloid-forming peptide GNNQQNY from the yeast prion sup-35. Biophys. J. 2006, 91, 824-833.
論文全文使用權限:不同意授權