現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:(I)建立新型水揚酸羥化酶專一隱藏式螢光分子探針生化檢測平台
(II)合成新化合物苯並咪唑衍生物電解液之添加劑提升敏化染料太陽能電池的光電轉換效率η (%) [以論文名稱查詢館藏系統]
論文英文名稱:(I)Characterization and Application of New Salicylate Hydroxylase Targeted Latent Fluorophore
(II)New Bis-benzimidazole derivatives as the electrolytic additives for enchancing the dye-sensitized solar cell photo-electric convection efficiency η (%) [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:生物科技研究所
畢業學年度:98
出版年度:99
中文姓名:李玉慧
英文姓名:Yu-Hui Lee
研究生學號:97688008
學位類別:碩士
語文別:中文
口試日期:2010-06-11
論文頁數:126
指導教授中文名:黃聲東
指導教授英文名:Sheng-Tung Huang
口試委員中文名:郭憲壽;林俊茂
口試委員英文名:Hsien-Shou Kuo;Chun-Mao Lin
中文關鍵詞:水揚酸羥化酶隱藏式螢光探針生化檢測系統敏化染料太陽能電池苯並咪唑開路電壓短路電流密度填充因子光電轉換效率η%
英文關鍵詞:quinion-methide-rearrangmentLatent fluorophoreSalicylate hydoxylasebenzimidazoleVocJscFFphoto to electric convection efficiency.
論文中文摘要:本論文為分兩個研究,分別為建立生化檢測系統平台、電解液添加劑用於敏化染料太陽能電池提升效率。第一部分水揚酸羥化酶(Salicylate hydoxylase, SHL)屬於黃素酵素(flavoenzyme)利用NADH及 O2進行水揚酸去碳酸基反應(decarboxylation)和羥基化反應(hydroxylation reaction)產生Catechol.。已有文獻報導偵測(SHL)活性使用電化學的方式觀察氧化還原電位做檢測,但電極製程耗時及酵素不易保存,造成使用不易。本論文使用高壓液相層析法(HPLC)和螢光光譜儀(Fluorescence Spectrophotometer)詳細探討(SF) 的螢光釋放機制於(SHL)、O2及NADH情況下做研究,實驗證實了隱藏式螢光探針的螢光釋放機.。(SF) 對生理環境中的各種氧化還原物質做穩定度觀察,(SF) 具有高穩定性,具專一性不會有螢光分子釋放.。本論文也利用新穎的(SF) 與(SHL)搭配脫氫酵素3-hydroxybutyrate dehydrogenase (HBDH) 建立新生物檢測平台,可偵測到微量之3-hydroxybutyrate、膽固醇(100~800 nΜ)。本研究有助於開發未來活體內之微量生化檢測系統(Biosensor)同時具有高靈敏度及專一性。
第二部分敏化染料太陽能電池【Dye-sensitized solar cells(DSSC)】具有低花費、高效能等優勢,可成為發展新一代太陽能電池之主流。若在電解液中額外添加促進劑(additives)例如4–TBP (4-tert-butyl-pyridine)、benzimidazole、1-methylben- zimidazole可提高電池光電轉換效率(η%),但會造成Jsc下降是經由多篇報導已證實。本研究在電解液中添加添加劑做改良以benzimidazole、2-(1-hydroxyethyl)benzimidazole做衍生合成12個新穎的化合物,簡單合成僅需一步驟將碳氫鏈poly(alky)基團、聚乙二醇pole(ethylene glycol)基團連結在benzimidazole、2-(1-hydroxyethyl)benzimidazole形成二聚物(dimer)以bis-benzimidazole alky系列和bis-benzimidazole ethylene glycol系列。比較Voc、Jsc、FF、η%的研究數值及電池光電轉換效率η (%),結果顯示(bis-benzimidazole)alky】系列在低濃度0.02M添加入0.5M 4–TBP的電解液中混不但造成Jsc上升還具有比benzimidazole(0.5M)更好電池光電轉換效率η (%)提升至30%以上。以benzimidazole做衍生新的化合物將會改進敏化染料太陽能電池【Dye-sensitized solar cells(DSSC)】電池光電轉換效率η (%)
論文英文摘要:In this study two, establishing new biosensor and dye-sensitized solar cell (DSSC) are the main projects of this thesis. The first part is the characterzation and application of new latent flourophore. Salicylate hydoxylase (SHL) is flavoenzyme catalyzes a stoichiometric conversion of salicylic acid (SA) to catechol in the presence of NADH and oxygen. .Our laboratory prepared a new latent flourogenic probe, Salicylate hydoxylase Latent fluorophore (SF) for real time monitor the SHL activities in the presence of NADH aerobe condition. The fluorogenic chemical transformation of SF triggered by SHL is through a tandem reaction, decarboxylation, hydroxylation, and quinion-methide-rearrangment reaction. In this study, we fully characterzed the fluorescence revealed of this new latent flourophore, SF, by flourescences spectrofluorometer and HPLC. Further more, the fluorescence response of SF does not influences by the presences of redox agents. Finally, we demonstrated that SF, is applicalle as a part of biosensor for analytes determination in the SHL-coupled dehydrogenases assay by including NAD+. This novel assay platform demonstrates a good relationship in detecting 3-hydroxybutyrate and cholesterol in 200 to 800 nM range, and is applicable for the construction of fiber-optic biosensors in the future clinical diagnostic.
The second part of this thesis is the improving of Dye-sensitized solar cells (DSSCs) efficiency by incorporation novel electrolyte additive. DSSC have been intensively studied over the past decade and regarded as a promising low-cost alternative to the conventional solid-state devices. Recently many research have identified electrolytic additive which can improve the photoelectric convection efficiency of DSSC additives drastically increased the Voc but reduce Jsc.
A series of 12 new bis-bezimidazole derivatives had been prepared and evaluated their influences as additives the in electrolyte DSSC. There 12 benzimidazole additives in DSSC electrolyte were by meaning the photo to electric conventional efficiency η (%) of DSSC. We had identified 2 additives which we out performed the current electrolytic additives (4-TBP).
論文目次:摘 要 I
ABSTRACT III
誌謝 V
目錄 VII
圖目錄 IX
第一章 前言 1
第二章 文獻回顧 2
2.1 隱藏式螢光分子探針文獻介紹 2
2.2 水揚酸羥化酶(Salicylate hydoxylase, SHL) 4
2.3 隱藏式螢光分子探針設計概念 6
2.4 (Salicylate hydoxylase Latent fluorophore, SF)系統機制 7
第三章 研究動機與目的 8
第四章 材料與方法 9
4.1 實驗儀器 9
4.2 實驗試藥 9
4.3 實驗檢測樣品配置 10
4.3.1 螢光光譜 (Fluorescence spectra)檢測 10
4.3.1.1 SF系統不同pH之螢光釋放檢測 11
4.3.1.2 螢光劑coumarin(3)不同pH螢光釋檢測 11
4.3.1.3 SF系統活性觀察 12
4.3.1.4 SF酵素動力學(Enzyme Kimetics)觀察 12
4.3.1.5 SF隱藏式螢光探針專一性檢測 13
4.3.1.6 coumarin(3)隱藏螢光專一性檢測 14
4.3.1.7 coumarin(3)隱藏式螢光探針還原鐵專一性檢測 14
4.3.2 HPLC高效液相層析檢測條件 15
4.3.2.1 HPLC觀察SF系統釋放機制 15
4.3.3 新生化檢測系統檢測 16
4.3.3.1 不同濃度水楊酸(Salicylic acid)的濃度檢測 16
4.3.3.2 3-Hydroxybutyrate的濃度檢測 16
4.3.3.3 Cholesterol的濃度檢測 17
第五章 結果與討論 19
5.1 隱藏式螢光探針SF對水楊酸羥化酶SHL不同pH之螢光釋放偵測.19
5.2 螢光分子coumarin (3)不同pH情況之螢光釋放檢測 21
5.3 HPLC檢測SF與SHL反應機制 23
5.4 SF對SHL即時活性觀察 25
5.5 酵素動力學 26
5.5.1. SF系統動力追蹤 26
5.5.2. SF系統酵素動力學 27
5.6 專一性測試 29
5.6.1 SF系統在氧化還原劑情況之專一性檢測 29
5.6.2 螢光分子coumarin (3)在氧化還原劑情況之專一性檢測 31
5.6.3 螢光分子coumarin (3)在不同濃度Fe2+情況之專一性檢測 32
5.7 SF系統螢光訊號還原性( Switch Off )偵測水楊酸 33
5.8 新型生化檢測系統的建立 35
5.8.1 SF搭配雙酵素系統偵測3-Hydroxybutyrate 37
5.8.2 SF搭配雙酵素系統偵測cholesterol 39
參考文獻 41
附錄 44
1.1 螢光分子(3)檢量線建立 44


目錄 I
圖目錄 IX
表目錄 V
第一章 前言 1
第二章 敏化染料太陽能電池 3
2.1 敏化染料太陽能電池組成結構 3
2.2 敏化染料太陽能電池輸出常數 5
2.3 敏化染料太陽能電池工作機制 6
2.4 降低敏化染料太陽能電池的整體效率 7
2.5 電解液之添加劑改善敏化染料太陽能電池效率η (%) 8
2.6 電解液添加劑文獻回顧 10
第三章 研究設計概念 12
第四章 材料與方法 13
4.1 實驗儀器 13
4.2 實驗試藥 14
4.3 實驗方法與流程 15
4.3.1 1-[1-(2-{2-[2-(1-Hydroxy-ethyl)-benzoimidazol-1-yl]-ethoxy}-ethyl)- 1H-benzoimidazol-2-yl]-ethanol (4)合成方法 16
4.3.2 1-{1-[2-(2-{2-[2-(1-Hydroxy-ethyl)-benzoimidazol-1-yl]-ethoxy} –eth oxy)-ethyl]-1H-benzoimidazol-2-yl}-ethanol(5)合成方法 17
4.3.3 1-(1-{2-[2-(2-{2-[2-(1-Hydroxy-ethyl)-benzoimidazol-1-yl]-ethoxy} -eth oxy)-ethoxy]-ethyl}-1H-benzoimidazol-2-yl)-ethanol (6) 合成方法….18
4.3.4 1-(1-{5-[2-(1-Hydroxy-ethyl)-benzoimidazol-1-yl]-pentyl}-1H-benzn zoimidazol-2-yl)-ethanol (9)合成 19
4.3.5 1-(1-{8-[2-(1-Hydroxy-ethyl)-benzoimidazol-1-yl]-octyl}-1H-benzoi- m idazol-2-yl)-ethanol (10)合成方法 20
4.3.6 2-[2-(2-Benzoimidazol-1-yl-ethoxy)-ethoxy]-ethanol (11)合成方法 21
4.3.7 1-(1-{2-[2-(2-Hydroxy-ethoxy)-ethoxy]-ethyl}-1H-benzoimidazol-2 -yl )-ethanol (12)合成方法 22
4.4 電解液配置 23
4.5 敏化染料太陽能電池組裝流程 25
第五章 結果與討論 28
5.1 全合成實驗步驟 28
5.2 敏化染料太陽能電池之電解液添加劑光電轉換效率比較 31
5.3 電解液添加劑雞尾酒之光電轉換效率比較 37
參考文獻 42
附錄 45
1.1化合物(4)之1H-NMR圖譜 45
1.2化合物(4)之13C-NMR圖譜 46
1.3化合物(4)之Mass圖譜 47
2.1化合物(5)之1H-NMR圖譜 48
2.2化合物(5)之13C-NMR圖譜 49
2.3化合物(5)之Mass圖譜 50
3.1化合物(6)之1H-NMR圖譜 51
3.2化合物(6)之13C-NMR圖譜 52
3.3化合物(6)之Mass圖譜 53
4.1化合物(9)之1H-NMR圖譜 54
4.2化合物(9)之13C-NMR圖譜 55
4.3化合物(9)之Mass圖譜 56
5.1化合物(10)之1H-NMR圖譜 57
5.2化合物(10)之13C-NMR圖譜 58
5.3化合物(10)之Mass圖譜 59
6.1化合物(11)之1H-NMR圖譜 60
6.2化合物(11)之13C-NMR圖譜 61
6.3化合物(11)之Mass圖譜 62
7.1化合物(12)之1H-NMR圖譜 63
7.2化合物(12)之13C-NMR圖譜 64
7.3化合物(12)之Mass圖譜 65
論文參考文獻:參考文獻

[1] a) Yee, D. J.; Balsanek, V.; Sames, D. "New Tools for Molecular Imaging of Redox Metabolism: Development of a Fluorogenic Probe for 3 -Hydroxysteroid Dehydrogenases, " J. Am. Chem. Soc. vol. 126, 2004, pp. 2282-2283. b) Zlokamik, G.; Negulescu, P.A.; Knapp, T.E.; Burres, N.; Feng, L.; Whitney, M.;Roemer, K.; Tsien, R. Y. "Quantitation of Transcription and Clonal Selection of Single Living Cells with -Lactamase as Reporter. Science. vol. 279, 1998, pp. 84-88. c) Chang, M. C. Y.; Pralle, A.; Isacoff, E. Y.; Chang, C. J. "A Selective, Cell-Permeable Optical Probe for Hydrogen Peroxide in Living Cells, " J. Am. Chem. Soc, vol. 126, 2004, pp. 15392-15393. d) Clave`, G.; Bernardin, A.;Massonnean, M.;Renard,P.-Y.;Romieu, A. "Latent fluorophores based on a Mannich cyclisation trigger. " Tetrahedron Lett. 2006, 6229-6233.
[2] Gao, W. ; X, B .; Tsien, R. Y.; Rao, J. "Novel Fluorogenic Substrates for Imaging β-Lactamase Gene Expression, " Journal of the American Chemical Society 125, 2003, pp. 11146-11147.
[3] Huanga, S. T.; Tinga, K. N.; 〝 Wang, K. L. "Development of a long-wavelength fluorescent probe based on quinone–methide-type reaction to detect physiologically significant thiols, " Analytica chimica acta, Vol 620, 2008, pp. 120–126.
[4] Rodrich, H. W-S and Andhenry.; "Studies of a Flavoprotein, Salicylate Hydroxylase, " The journal of biological chemistry, Vol. 247, no. 8, 1972, pp. 2358-2370.
[5] Benjamin G. Milagres, G. O. Netoa, L.; T. Kubotaa , H. Y.; "A new amperometric biosensor for salicylate based on salicylate hydroxylase immobilized on polipyrrole, " Analytica Chimica Acta, Vol. 347, 1997, pp. 35-41,
[6] a) Mak, K. K. W.; Wollenberger, U.; Scheller, F. W.; Renneberg, R. "An amperometric bi-enzyme sensor for determination of formate using cofactor regeneration, " Biosensor and Bioelectronics Vol. 18, 2003, pp. 1095-1100. b) Cui, Y.; Barford, J. P.; Renneberg, R., "Development of a bienzyme system for the electrochemical determination of nitrate in ambient air, " Anal Biochem. Vol. 354, 2006, pp. 162-164. c) Kwan, R. C. H.; Hon, P. Y. T.; "Renneberg, R. Amperometric biosensor for rapid determination of alanine, " Anal. Chimica Acta, Vol. 523, 2004, pp. 81-88. d) Cui, Y.; Barford, J. P.; Renneberg, R. Enzyme and Microbial Tech., Vol 41, 2007, 689-693. e) Kwan, R. C. H.; Hon, P. Y. T.; Mak, K. K. W.; Renneberg, R. "Amperometric determination of lactate with novel trienzyme/poly(carbamoyl) sulfonate hydrogel-based sensor," Biosensor and Bioelectronics, 19, 2004, pp. 1745-1752. f) Kwan, R. C. ;Hon, P. Y. T.; Mak, W. C.; Law, L. Y.;Hu, J.;Hu, J.; Renneberg, R. "Biosensor for rapid determination of 3-hydroxybutyrate using bienzyme system. Biosens. Bioelectron, " Vol. 21, 2006, pp. 1101-1106. g) Cui, Y.; Barford, J. P.; Renneberg, R. "Development of an interference-free biosensor for l-glutamate using a bienzyme salicylate hydroxylase/l-glutamate dehydrogenase system, " Anal. Biochem. Vol. 354, pp. 162-164.
[7] Wolfbeis, O. S.; Koller, E; Hochmuth, P. "The Unusually Strong Effect Of a 4-Cyano Group upon Electronic Spectra and Dissociation Constants of 3-Substituted 7-Hydroxycoumarin. Bull, " Chem. Soc. Jpn. Vol. 58, 1985, pp. 731-734.
[8] Cosnier, S.; Gondran, C. ; and Jean-Christophe.; "Watelet A Polypyrrole -Bienzyme Electrode (Salicylate Hydroxylase- Polyphenol Oxidase) for the Interference-Free Determination of Salicylate," Electroanalysis, Vol. 13, No. 11, 2oo1, pp 906-910.
[9] B. C ́amara, ; P. Bielecki,; F. Kaminski, V. M. d. Santos, ; I. Plumeier,; P. Nikodem, and D. H. Pieper, "A Gene Cluster Involved in Degradation of Substituted Salicylates via ortho Cleavage in Pseudomonas sp. Strain MT1 Encodes Enzymes Specifically Adapted for Transformation of 4-Methylcatechol and 3-Methylmuconate, " Journal of bacteriology, Vol. 189, No.5, 2007, pp. 1664–1674.
[10] K. I. Setsukinai, Y. Urano, K. Kakinuma, H. J. Majima,and T. Nagano "Development of Novel Fluorescence Probes That Can Reliably Detect eactive Oxygen Species and Distinguish Specific Species," The Journal of Biological Chemistry, vol.278, no.5, 2003, pp. 3170-3175.
[11] a)Y, Kayamori, H, Hatsuyama, T. Tsujioka, M. Nasu, and Y. Katayama, "Endpoint Colorimetric Method for Assaying Total Cholesterol in Serum with Cholesterol Dehydrogenase, " Clinical Chemistry, vol. 45, no. 12, 1999, pp. 2158-2163. b) Lawrence C.S. Chou, Chung-Chiun Liu " Development of a molecular imprinting thick film electrochemical sensor for cholesterol detection, " Sensors and Actuators B Vol. 110, 2005, pp. 204–208.
[1] A. Zaban, J. Zhang, Y. Diamant, O. Melemed, and J. Bisquert, 〝Internal reference electrode in dye sensitized solar cells for three-electrode electrochemical characterizations,〞 J. Phys. Chem. B vol. 14, 2003, pp. 107 6022
[2] a)G.P. Smestad, M. Gratzel, M. J. Chem. Educ. Vol. 75, no. 15, 1998, pp. 752-756. b) M. Gratzel, 〝Photoelectrochemical cells,〞 Nature Vol. 414. no.15, 2001, pp. 338-344.
[3] W. E. McMahon, S. Kurtz, K. Emery, and M. S. Young, 〝Criteria for the design of GaInP/GaAs/Ge triple-junction cells to optimize their performance outdoors, 〞 Photovoltaic Specialists Conference , 2002, pp. 931−934.
[4] N. Robertson,〝Optimizing Dyes for Dye-Sensitized Solar Cells〞Angew. Chem. Int. Ed. Vol. 45, 2006, pp. 2338 – 2345.
[5] H. Kusama∗, H Arakawa, 〝Influence of benzimidazole additives in electrolytic solution on dye-sensitized solar cell performance〞Journal of Photochemistry and Photobiology A: Chemistry Vol. 162, 2004, pp. 441–448.
[6] H. Kusama, H. Sugihara,〝Density functional study of alkylpyridine–iodine interaction and its implications in the open-circuit photovoltage of dye-sensitized solar cell〞Solar Energy Materials & Solar Cells, Vol. 90, 2006, 953–966.
[7] C. Zhang, J. Dai, Z. Huo, X. Pan, L. Hu, F. Kong, Y. Huang, Y. Sui, X. Fang, K. Wang, S. Dai, 〝Influence of 1-methylbenzimidazole interactions with Li+ and TiO2 on the performance of dye-sensitized solar cells〞 Electrochimica Acta Vol. 53, 2008, pp. 5503–5508.
[8] X. Yina,c, W. Tana,c, J. Zhanga,, Y. Wengb, X. Xiaoa, X. Zhoua, X. Lia, Y. Lina〝The effect mechanism of 4-ethoxy-2-methylpyridine as an electrolyte additive on the performance of dye-sensitized solar cell〞 Colloids and Surfaces A: Physicochem. Vol. 326, 2008, 42–47.
[9] X. Yin, W. Tan, J. Z, Y. Lin , X. Xiao, Xi. Zhou, X. Li, B. R. Sankapal〝Synthesis of pyridine derivatives and their influence as additives on the photocurrent of dye-sensitized solar cells〞J Appl Electrochem Vol. 39, 2009, pp. 147–154.
[10] H. Kusama*, Y. Konishi, H. Sugihara, H. Arakawa,〝Influence of alkylpyridine additivesin electrolyte solution on the performance of dye-sensitized solar cell,〞 Solar Energy Materials & Solar Cells Vol. 80 , 2003, 167–179.
[11] H. Kusama*, H. Arakawa〝Influence of alkylaminopyridine additives in electrolytes on dye-sensitized solar cell performance,〞Solar Energy Materials & Solar Cells Vol. 81, 2004, pp. 87–99.
[12] H. Kusama*, H. Arakawa 〝Influence of aminothiazole additives in I-/I3- redox electrolyte solution on Ru(II)-dye-sensitized nanocrystalline TiO2 solar cell performance,〞Solar Energy Materials & Solar Cells Vol. 82, 2004, 457–465.
[13] S.Y. Huang, G. Schlichthörl, A.J. Nozik, M. Grätzel, A.J. Frank, 〝Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells,〞 J. Phys. Chem. B Vol. 101, 1997, pp. 2576–2582.
[14] Toshio Itahara* and Kozo Imaizumi〝Role of Nitrogen Atom in Aromatic Stacking〞J. Phys. Chem. B, Vol. 111, No. 8, 2007.pp. 2025-2032.
[15] Sven H. Hausner,* Cynthia A. F. Striley,§ Jeanette A. Krause-Bauer, and Hans Zimmer〝Dibenzotetraaza Crown Ethers: A New Family of Crown Ethers Based on o-Phenylenediamine〞J. Org. Chem., Vol. 70, No. 15, 2005, pp. 5804-5817.
[16] H. Kusama∗, H. Arakawa, 〝Influence of aminotriazole additives in electrolytic solution on dye-sensitized solar cell performance,〞 Journal of Photochemistry and Photobiology A: Chemistry, Vol. 164, 2004, pp. 103–110.
[17] H. Kusama∗, H. Arakawa, 〝Influence of pyrazole derivatives in I-/I3- redox electrolyte solution on Ru(II)-dye-sensitized TiO2 solar cell performance,〞 Journal of Photochemistry and Photobiology A: Chemistry, Vol. 85, 2005, pp. 333-344
論文全文使用權限:同意授權於2010-06-29起公開