現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:幾丁聚醣與其交聯物質修飾鈦合金表面之生物相容性研究 [以論文名稱查詢館藏系統]
論文英文名稱:The Study of Biocompatibility of Surface Modified Titanium Alloys by Chitosan and Its Crosslinked Agent [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:生物科技研究所
畢業學年度:99
出版年度:100
中文姓名:陳靜慧
英文姓名:Jing-Huei Chen
研究生學號:98688020
學位類別:碩士
語文別:中文
口試日期:2011-07-25
論文頁數:61
指導教授中文名:林忻怡
口試委員中文名:黃聲東;王大銘
中文關鍵詞:鈦合金表面改植幾丁聚醣骨母細胞
英文關鍵詞:titanium alloysurface modificationchitosanosteoblast
論文中文摘要:鈦與鈦合金為常見的金屬植體且被廣泛地使用在牙科及骨科手術上,因為鈦與鈦合金具有良好的機械性質及生物相容性,然而,以鈦金屬做為植體在臨床上仍然有一些缺點,因為不適當的細胞貼附或植體對細菌的易感染性而導致 植體與骨頭組織接觸面造成磨擦而產生鬆動,抑或作為植體經過長期磨損會釋放出金屬粒子,對骨骼生成造成影響;因此,本研究以鈦金屬作為基質,經由表面鈍化處理後,利用幾丁聚醣(Chitosan)塗佈於金屬上,並分別以褐藻酸(Alginate)、槴子素(Genipin)及果膠(Pectin)等天然高分子與幾丁聚醣塗層交聯,其後進行物理性測試及生物相容性測試。物理測試實驗結果顯示經由褐藻酸及果膠交聯的幾丁聚醣材料在澎潤率、藥物釋放及酵素降解都較經由槴子素交聯的材料來的高;另外,在細胞相容性測試方面,以CCK-8測定細胞活性,經由骨母細胞分化指標測試該材料的生物相容性,透過LIVE/DEAD assay及掃描試電子顯微鏡觀察細胞生長型態,以及利用Von Kossa染色及鈣質定量觀察骨母細胞礦化程度。實驗結果顯示,以幾丁聚醣塗層與幾丁聚醣-褐藻酸及幾丁聚醣-果膠三個組別有較佳的細胞增生效果,膠原蛋白分泌、鹼性磷酸酶活性及骨鈣化程度也較幾丁聚醣-槴子素組別及鈦合金高,因此,表面改質以共價鍵結接上幾丁聚醣以及其離子型鍵結交聯褐藻酸和果膠等材料,可使金屬表面藉由骨母細胞功能的提升而促進骨整合的效果。
論文英文摘要:Titanium and titanium alloy are commom metal implants widely used in dental and orthopedic surgery because of their excellent biocompatibility and mechanical properties. However, titanium-based implants are still associated with clinical challenges, unsatisfactory cell adhesion and the susceptibility of the implants to bacterial infections may lead to loose at interface of implant and bone. Hence, the surface modification of titanium alloy is often performed to improve the bone-implant contact and biological properties. In this study, the surface of titanium alloy substrates was first functionalized by covalently grafted chitosan. The crosslinked solution, such as alginate, pectin and genipin, was then coated on the chitosan-grafted surface by ionic or covalent binding. Swelling ratio and biodegradation was evaluated in this study. Differences in growth were attributed to differences in modified surface material, though all coatings were judged to be osteocompatible in vitro. The osteoblastic cells on the grafted-chitosan and crosslinked with alginate and pectin materials expressed much higher collagen, alkaline phosphatase levels, and calcium deposition than those on the uncoated Ti and cresslinked with genipin substrates. Thus, utilizing surface-grafted chitosan and it crosslinked with alginate and pectin to modify the metal surface provides a promising means for enhancing bone integration of implants by promoting osteoblast functions.
論文目次:中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究目的 1
第二章 文獻回顧 2
2.1 骨骼重建機制 2
2.2 鈦金屬與表面改植 4
2.2.1 鈦與鈦合金性質 4
2.2.2 表面處理及技術 6
2.3 幾丁聚醣與交聯物質 9
2.3.1 幾丁聚醣及其應用 9
2.3.2 交聯材料 10
2.3.2.1 褐藻酸納 10
3.3.2.2 果膠 11
3.3.2.3 槴子素 12
第三章 實驗材料與方法 13
3.1 實驗材料 13
3.1.1 細胞來源 13
3.1.2 細胞培養用藥品 13
3.1.3 實驗藥品 14
3.1.4 儀器設備 17
3.1.5 藥品及緩衝液製備 18
3.2 實驗方法 20
3.2.1 實驗設計 20
3.2.2 試片表面處理及幾丁聚醣塗佈與交聯 22
3.2.3 材料物理性質測試 24
3.2.3.1 接觸角(Contact angle) 24
3.2.3.2 膨潤率(Swell ratio) 24
3.2.3.3 酵素降解(Enzymatic degradation) 25
3.2.3.4 藥物釋放(Drug release) 25
3.2.3.5 膜厚度 26
3.2.4 骨母細胞在試片上的活性測試 27
3.2.4.1 接種細胞前的樣本前處理 27
3.2.4.2 細胞接種 27
3.2.4.3 細胞活性(CCK-8) 27
3.2.4.4 DNA定量 28
3.2.4.5 鈣質含量 28
3.2.4.6 鹼性磷酸酶活性(ALP activity) 28
3.2.4.7 膠原蛋白定量 29
3.2.4.8 掃描式電子顯微鏡(SEM) 30
3.2.4.9 鈣質染色 30
3.2.4.10 LIVE/DEAD染色 30
3.2.5 統計分析 31
第四章 實驗結果與討論 32
4.1 試片物理性質分析 32
4.1.1 接觸角測試 32
4.1.2 膨潤測試 34
4.1.3 酵素降解測試 35
4.1.4 藥物釋放測試 36
4.1.5 膜厚度測試 37
4.2 幾丁聚醣與其交聯物質塗層表面之細胞活性測試 39
4.2.1 細胞活性 39
4.2.2 DNA含量 40
4.2.3 SEM觀察骨母細胞在塗層表面之型態 41
4.2.4 Collagen含量 45
4.2.5 鹼性磷酸酶活性 46
4.2.6 鈣質含量及染色 47
4.2.7 LIVE/DEAD染色 51
第五章 結論 54
參考文獻 55
論文參考文獻:楊哲青(2003)。生醫用鈦合金之滑動磨潤性質研究。國立成功大學材料科學與工程研究所碩士論文。
謝明哲(2006)。鈦合金奈米級表面粗糙差異對表面性質及細胞初期生長的影響。國立成功大學製造工程研究所碩士論文。
林佑任(2009)。探討低頻電磁場對成骨組織和刺激發炎反應之影響。國立臺北科技大學生物科技研究所碩士論文。
葉志宗(2009)。以幾丁聚醣為基質製備應用於藥物釋放之組織工程多孔性支架。國立臺北科技大學化學工程研究所碩士論文。
溫明璇(2009)。人類骨髓間葉幹細胞在不同植體表面進行骨生成分化之體外研究。國防醫學院生物及解剖學研究所碩士論文
A. Bigi, E. Boanini, B. Bracci, A. Facchini, S. Panzavolta, F. Segatti, L. Sturba, "Nanocrystalline hydroxyapatite coatings on titanium: a new fast biomimetic method," Biomaterials 2005; 26:4085–4089
A.D. Martino, M. Sittinger, M.V. Risbud, "Chitosan: A versatile biopolymer for orthopaedic tissue-engineering," Biomaterials 2005; 26:5983–5990.
A.L. Hillberg, C.A. Holmes, M. Tabrizian, "Effect of genipin cross-linking on the cellular adhesion properties of layer-by-layer assembled polyelectrolyte films," Biomaterials 2009; 30:4463–4470.
A.L. Rosa and M.M. Beloti, "Development of the Osteoblast Phenotype of Serial Cell Subcultures from Human Bone Marrow," Braz Dent J 2005; 16:225-230.
B. Feng, J. Weng, B.C. Yang, S.X. Qu, X.D. Zhang, "Characterization of surface oxide films on titanium and adhesion of osteoblast," Biomaterials 2003; 24: 4663–4670.
B.R. Thakur, R.K. Singh, A.K. Handa, M.A. Rao, "Chemistry and uses of pectin - A review," Critical Reviews in Food Science and Nutrition 1997, 37:47-73.
D.A. Puleo, R.A. Kissling, M.S. Sheu, "A technique to immobilize bioactive proteins, including bone morphogenetic protein-4 (BMP-4), on titanium alloy," Biomaterials 2002; 23:2079–2087.
D.L. Thompson, K.D. Lum, S.C. Nygaard, R.E. Kuestner, K.A. Kelly, J.M. Gimble, E.E. Moore, "The Derivation and Characterization of Stromal Cell Lines from the Bone Marrow of p53−/− Mice: New Insights into Osteoblast and Adipocyte Differentiation," Journal of Bone and Mineral Research 1998; 13:195-204
D. Oakenfull, A. Scott, "Hydrophobic interaction in the gelation of high methoxyl pectins," Journal of Food Science 1984; 49:1093–1098.
D. Ren, H. Yia, W. Wanga, X. Ma, "The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-acetylation," Carbohydrate Research 2005; 340:2403-2410.
F.L. Mi, H.W. Sung, S.S. Shyu, "Release of Indomethacin from a Novel Chitosan Microsphere Prepared by a Naturally Occurring Crosslinker: Examination of Crosslinking and Polycation–Anionic Drug Interaction, " Journal of Applied Polymer Science 2001; 81:1700-1711.
F.L. Mi, H.W. Sung, S.S. Shyu, C.C. Su, C.K. Peng, "Synthesis and characterization of biodegradable TPP/genipin co-crosslinked chitosan gel beads," Polymer 2003; 44:6521-6530.
F.L. Mi, S.S. Shyu, C.K. Peng, "Characterization of Ring-Opening Polymerization of Genipin and pH-Dependent Cross-Linking Reactions Between Chitosan and Genipin," Journal of Polymer Science Part A: Polymer Chemistry 2005; 43:1985-2000
F.L. Mi, S.S. Shyu, C.T. Chen, J.Y. Schoung, "Porous chitosan microsphere for controlling the antigen release of Newcastle disease vaccine: preparation of antigen-adsorbed microsphere and in vitro release," Biomaterials 1999; 20:1603-1612.
F.L. Mi, Y.C. Tan, H.F. Liang, H.W. Sung, "In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant," Biomaterials 2002; 23:181-191.
G. He, J. Eckert, Q.L. Dai, M.L. Sui, W. L.oser, M. Hagiwara, E. Ma, Nanostructured Ti-based multi-component alloys with potential for biomedical application. Biomaterials 2003; 24:5115-5120.
G.S. Macleod, J.T. Fell, J.H. Collett, H.L. Sharma, A.M. Smith, "Selective drug delivery to the colon using pectin:chitosan:hydroxypropyl methylcellulose film coated tablets," International Journal of Pharmaceutics 1999; 187:251–257.
G.S. Stein, J.B. Lian, J.L. Stein, A.J.V. Wijnen, M. Montecino, "Transcriptional Control of Osteoblast Growth and Differentiation," Physiological Reviews 1996, 76: 593-629.
H.J. Martin, K.H. Schulz, J.D. Bumgardner, K.B. Walters, "An XPS study on the attachment of triethoxsilylbutyraldehyde to two titanium surfaces as a way to bond chitosan," Applied Surface Science 2008; 254:4599–4605.
H.W. Sung, R.N. Hunag, L.L. Hunag, C.C. Tsai, C.T. Chiu, "Feasibility study of natural crosslinking reagent for biological tissue fixation," Journal of Biomed. Mater. Res. 1998; 42:560-567.
H.Y. Lin, S.Y. Ciou, "Modifications of alginate-based scaffolds and characterizations of their pentoxifylline release properties," Carbohydrate Polymers 2010; 80:574–580.
J.B. Lian and G.S. Stein, "Osteoporosis: chapter 6," Osteoblast Biology, 2008:93-150
J.B. Lian and G.S. Stein, "Development of the osteoblast phenotype: molecular mechanisms mediating osteoblast growth and differentiation," Iowa Orthop J. 1995; 15:118–140.
J.D. Bumgardner, R. Wiser, P.D. Gerard, P. Bergin, B. Chesrnutt, M. Marini, V. Ramsey, S.H. Elder and J.A. Gilberta, "Chitosan: potential use as a bioactive coating for orthopaedic and craniofacial/dental implants," J Biomater Sci Polym Ed. 2003; 14:423-38.
J. Jin, M. Song ,D. J. Hourston, "Novel Chitosan-Based Films Cross-Linked by Genipin with Improved Physical Properties," Biomacromolecules 2004; 5:162-168.
J. Matthew and Jr. Donachie, "Titanium a technical guide," 2rd Editoin, ASM International, Metals Park, OH 44073, USA, 2000.
J.M. Curran, J.A. Gallagher, J.A. Hunt, "The inflammatory potential of biphasic calcium phosphate granules in osteoblast/macrophage co-culture," Biomaterials 2005; 26: 5313–5320.
J.M. Schierholz and J. Beuth, "Implant infections: a haven for opportunistic bacteria," Journal of Hospital Infection 2001; 49:87–93.
J. Wang, A. van Apeldoorn, K. de Groot, "Electrolytic deposition of calcium phosphate/chitosan coating on titanium alloy: Growth kinetics and influence of current density, acetic acid, and chitosan," J Biomed Mater Res A. 2006; 76:503-11.
K.C. Gupta, M.N.V. Ravi Kumar, "Drug release behavior of beads and microgranules of chitosan," Biomaterials 2000; 21:1115-1119.
L. Wang, E. Khor, A. Wee, L.Y. Lim, "Chitosan-alginate PEC membrane as a wound dressing: Assessment of incisional wound healing," Journal of Biomedical Materials Research 2002; 63:610-628.
L. Zhu, X. Ye, G. Tang, N. Zhao, Y. Gong, Y. Zhao, J. Zhao, X. Zhang, "Biomimetic coating of compound titania and hydroxyapatite on titanium," Journal of Biomedical Materials Research Part A 2007; 83:1165-1175.
M. Niinomi, "Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti–29Nb–13Ta–4.6Zr," Biomaterials 2003; 24:2673–2683
P. Coimbra, P. Ferreira, H.C. de Sousa, P. Batista, M.A. Rodrigues, I.J. Correia, M.H. Gil, "Preparation and chemical and biological characterization of a pectin/chitosan polyelectrolyte complex scaffold for possible bone tissue engineering applications," International Journal of Biological Macromolecules 2011; 48:112–118.
P.H. Chua, K.G. Neoh, E.T. Kang, W. Wang, "Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion," Biomaterials 2008; 29:1412-1421.
P.T. de Oliveira, S.F. Zalzal, K. Irie, A. Nanci, "Early Expression of Bone Matrix Proteins in Osteogenic Cell Cultures" J Histochem Cytochem 2003; 51:633-641.
R. A.A. Muzzarelli, "Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone," Carbohydrate Polymers 2009; 76:167–182.
R.A.A. Muzzarelli, "Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids," Carbohydrate Polymers 2009; 77:1–9.
R. J. vant’t Hof, S.H. Ralston., "Nitric oxide and bone," Immunology 2001; 103: 255-261.
S. Bruni, M. Martinesi, M. Stio, C. Treves, T. Bacci, F. Borgioli, "Effects of surface treatment of Ti–6Al–4V titanium alloy on biocompatibility in cultured human umbilical vein endothelial cells," Acta Biomaterialia 2005; 1:223-234.
S.E. Kim, J.H. Park, Y.W. Cho, H. Chung, S.Y. Jeong, E.B. Lee, I.C. Kwon, "Porous chitosan scaffold containing microspheres loaded with transforming growth factor-β1: Implications for cartilage tissue engineering," Journal of Controlled Release 2003; 91:365-374.
S.E. Kim, S.H. Song, Y.P. Yun, B.J. Choi, I.K. Kwon, M.S. Bae, H.J. Moon, Y.D. Kwon, "The effect of immobilization of heparin and bone morphogenic protein-2 (BMP-2) to titanium surfaces on in fl ammation and osteoblast function," Biomaterials 2011; 32:366-373.
S. Takka, F. Acartürk, "Calcium alginate microparticles for oral administration. I: Effect of sodium alginate type on drug release and drug entrapment," Journal of Microencapsulation 1999; 16:275-290.
T.C.A. Phan, J. Xu, M.H. Zheng, "Interaction between osteoblast and osteoclast: impact in bone disease," Histol Histopathol 2004; 19:1325-1344.
T.M. Lee, E. Chang, C.Y. Yang, "Attachment and proliferation of neonatal rat calvarial osteoblasts on Ti6Al4V: effect of surface chemistries of the alloy," Biomaterials 2004; 25:23–32.
T. Matsumoto, M. Kawai, T. Masuda, "Rheological properties and fractal structure of concentrated polyion complrxes of chitosan and alginate," Biorheology 1993; 30:435-441.
X.F. Liu, Y.L. Guan, D.Z. Yang, Z.Li, K.D. Yao, "Antibacterial action of chitosan and carboxymethylated chitosan," Journal of Applied Polymer Science 2000; 79:1324-1335.
X.H. Wang, J. Ma, Y. Wang, B.He, "Bone repair in radii and tibias of rabbits with phosphorylated chitosan reinforced calcium phosphate cements," Biomaterials 2002; 23:4167-4176.
X. Liu, P.K. Chu, C. Ding, "Surface modification of titanium, titanium alloys, and related materials for biomedical applications," Materials Science and Engineering 2004; R47:49–121.
X. Zhu, J. Chen, L. Scheideler, R. Reichl, J. Geis-Gerstorfer, "Effects of topography and composition of titanium surface oxides on osteoblast responses," Biomaterials 2004; 25:4087–4103.
Y.C. Chung and C.Y. Chen, "Antibacterial characteristics and activity of acid-soluble chitosan," Journal of Bioresource Technology 2008; 99:2806-2814.
Y. Liu, P. Layrolle, J. de Bruijn, C. van Blitterswijk, K. de Groot, "Biomimetic coprecipitation of calcium phosphate and bovine serum albumin on titanium alloy," Journal of Biomedical Materials Research. Part A, 57:327-335.
Y. Okazaki, S. Rao, T. Tateishi, Y. Ito, "Cytocompatibility of various metal and development of new titanium alloys for medical implants," Materials Science and Engineering 1998; A243:250–256.
Z.A.I. Zarina, Z.A.S. Hisham, M.A.W. Rohaya, S. Sahidan, Z.A. Zaidah, "Osteoclast and osteoblast development of Mus musculus haemopoietic mononucleated cells," Journal of Biological Science 2008; 8:506-516.
Z. Li, H.R. Ramay, K.D. Hauch, D. Xiao, M. Zhang, "Chitosan–alginate hybrid scaffolds for bone tissue engineering," Biomaterials 2005; 26:3919–3928.
論文全文使用權限:不同意授權