現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:以快速原型技術製作3D多孔性幾丁聚醣/膠原蛋白支架應用於皮膚組織工程 [以論文名稱查詢館藏系統]
論文英文名稱:Fabrication 3D Porous Chitosan/Collagen Scaffold by Rapid Prototyping Technique for Applications in Skin Tissue Engineering [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:生化與生醫工程研究所
畢業學年度:101
出版年度:102
中文姓名:張雅瑄
英文姓名:Ya-Hsuan Chang
研究生學號:100688025
學位類別:碩士
語文別:中文
口試日期:2013-07-25
論文頁數:66
指導教授中文名:林忻怡
指導教授英文名:Hsin-Yi Lin
口試委員中文名:謝學真;鍾仁傑
口試委員英文名:Hsyue-Jen Hsieh;Ren-Jei Chung
中文關鍵詞:快速原型幾丁聚醣膠原蛋白纖維母細胞
英文關鍵詞:rapid prototypingchitosancollagenfibroblast
論文中文摘要:組織工程是藉由多孔、可被降解的支架運送細胞、基因、蛋白質,使受傷的組織達到組織修復的目的。組織工程中,支架用來作為胞外基質的替代物,引導細胞向內生長並使組織再生。
理想的支架需具有適當的表面化學特性,使細胞貼附、增生及分化;大量互通的孔洞所形成的網狀結構,可使氧氣和營養物質通過提供細胞生長;足夠的機械強度及生物降解率;高度生物相容性可使細胞貼附及生長。
傳統的支架製作方法不能精確的控制孔洞大小、形狀、互通性及孔洞的在立體空間分布。利用快速原型(Rapid prototpying)技術製作的支架具有互相通聯的孔洞,有利於營養物質的輸送、代謝物的排除;高度多孔的特性,則利於細胞生長與組織生成。
本研究以快速原型技術製作幾丁聚醣/膠原蛋白支架作為實驗組、幾丁聚醣支架為對照組,比較兩種支架在物理性質及生物相容性上的差異性。
實驗結果顯示,以快速原型技術製作的幾丁聚醣/膠原蛋白支架結構具有穩定的機械強度,支架的多孔性使其具良好的生物降解性及生物相容性,並可以促進纖維母細胞生長達到皮膚修復的功能。
論文英文摘要:Tissue engineering that repairs damage tissues through the porous, degradable scaffold to deliver cells, genes, and proteins. In tissue engineering, scaffolds serve as temporary surrogates for the extracellular matrix and guide for tissue ingrowth to regenerate the tissue.
The ideal scaffolds should have (Ⅰ) An appropriate surface chemistry characteristics to facilitate cell attachment, proliferation and differentiation. (Ⅱ) An extensive network of interconnecting pores through which oxygen and nutrients are provided cells to grow. (Ⅲ) Adequate mechanical strength and biodegradation rate. (Ⅳ) High biocompatibility for cells to attach and proliferate.
Conventional techniques methods do not control precisely over the pore size, pore geometry, pore interconnectivity and the spatial distribution of pores, Using rapid prototyping technology to facbricate scaffold which has interconnected porous and facilitate transport of nutrients and metabolite into and out of the scaffold. Highly porous of scaffolds facilitate cell growth and tissue formation.
In the present study, we fabricated chitosan/collagen scaffold as the exprientment group and chitosan scaffold as the control group. Further, we compared two scaffolds differences between physical characteristics and biocompatibility characteristics.
Results show that using rapid prototyping technology to fabricate the chitosan /collagen scaffold which structure has stable mechanical strength, and which porous properties has good biodegradability and biocompatibility which can promote fiberblast growth to repair skin.
論文目次:摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1前言 1
1.2研究目的 2
第二章 文獻回顧 3
2.1傷口癒合過程 3
2.2快速原型系統 5
2.3幾丁聚醣 6
2.3.1幾丁聚醣介紹 6
2.3.2幾丁聚醣結構特性 6
2.4膠原蛋白 8
第三章 實驗材料與方法 9
3.1實驗材料 9
3.1.1細胞來源 9
3.1.2細胞培養用藥品 9
3.1.3實驗藥品 10
3.1.4儀器設備 15
3.1.5藥品及溶液製備 16
3.2實驗方法 19
3.2.1實驗設計 19
3.2.2實驗架構 19
3.2.3 3D多孔性支架製作 20
3.2.3.1溶液配製 20
3.2.3.2支架製作 21
3.3支架物理特性測試 24
3.3.1掃描式電子顯微鏡 24
3.3.2纖維直徑與纖維間距 24
3.3.3孔隙度測試 25
3.3.4 吸水率 25
3.3.5 PBS降解測試 26
3.3.6酵素降解測試 27
3.3.7拉伸測試 28
3.3.7.1拉伸測試 28
3.3.7.2支架之拉伸測試 28
3.4纖維母細胞在支架上的活性測試 29
3.4.1種細胞前的樣本前處理 29
3.4.2細胞接種 29
3.4.3 DNA定量 30
3.4.4掃描式電子顯微鏡 31
3.4.5細胞存活螢光染色 31
3.4.6 Hematoxylin & Eosin 染色 32
3.5統計分析 32
第四章 實驗結果與討論 33
4.1 3D多孔性支架物理性質測試 33
4.1.1掃描式電子顯微鏡 33
4.1.2纖維直徑與纖維間距 34
4.1.3孔隙度測試 36
4.1.4吸水率 37
4.1.5 PBS降解測試 38
4.1.6酵素降解測試 39
4.1.7拉伸測試 40
4.2纖維母細胞在3D多孔性支架上的活性測試 43
4.2.1 DNA 定量 43
4.2.2掃描式電子顯微鏡 45
4.2.3細胞存活螢光染色 55
4.2.4 Hematoxylin & Eosin 染色 58
第五章 結論 61
參考文獻 63
附錄 66
附錄1 DNA定量標準曲線 66
論文參考文獻:1. S.-Y. Lin, K.-S. Chen, and L. Run-Chu, "Design and evaluation of drug-loaded wound dressing having thermoresponsive, adhesive, absorptive and easy peeling properties," Biomaterials, 2001. 22(22): p. 2999-3004.
2. A.B. Lugao, and S.M. Malmonge, "Use of radiation in the production of hydrogels," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2001. 185(1): p. 37-42.
3. W.-Y. Yeong, et al., "Rapid prototyping in tissue engineering: challenges and potential, " Trends in Biotechnology, 2004. 22(12): p. 643-652.
4. H. Seyednejad, et al., "Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications," Acta Biomaterialia, 2011. 7(5): p. 1999-2006.
5. S. MacNeil, "Progress and opportunities for tissue-engineered skin," Nature, 2007. 445(7130): p. 874-80.
6. A.G. Mikos, et al., "Host response to tissue engineered devices," Adv Drug Deliv Rev, 1998. 33(1-2): p. 111-139.
7. M.P. Welch, G.F. Odland, and R.A. Clark, "Temporal relationships of F-actin bundle formation, collagen and fibronectin matrix assembly, and fibronectin receptor expression to wound contraction," J Cell Biol, 1990. 110(1): p. 133-45.
8. 陳慶頤,以力學觀點評估傷口注射膠原蛋白, 透明質酸及明膠對皮膚癒合的影響,碩士論文,國立成功大學醫學工程研究所,臺北,2010。
9. Epstein, F.H., A.J. Singer, and R.A. Clark, "Cutaneous wound healing," New England Journal of Medicine, 1999. 341(10): p. 738-746.
10. R.A. CLARK, "Basics of cutaneous wound repair," The Journal of dermatologic surgery and oncology, 1993. 19(8): p. 693-706.
11. H. Seyednejad, et al., "Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications, " Acta Biomaterialia, 2011. 7(5): p. 1999-2006.
12. J.P. Li, et al., "Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment, " Biomaterials, 2006. 27(8): p. 1223-35.
13. T.B. Woodfield, et al., "Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique," Biomaterials, 2004. 25(18): p. 4149-61.
14. T. Billiet, et al., "A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering," Biomaterials, 2012. 33(26): p. 6020-6041.
15. A.G. Mikos, et al., "Preparation and characterization of poly(L-lactic acid) foam," Polymer, 1994. 35(5): p. 1068-1077.
16. D.J. Mooney, et al., "Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents," Biomaterials, 1996. 17(14): p. 1417-22.
17. L.E. Freed, et al., "Biodegradable polymer scaffolds for tissue engineering," Biotechnology, 1994. 12(7): p. 689-93.
18. H. Lo, M.S. Ponticiello, and K.W. Leong, "Fabrication of controlled release biodegradable foams by phase separation," Tissue Eng, 1995. 1(1): p. 15-28.
19. R.C. Thomson, et al., "Fabrication of biodegradable polymer scaffolds to engineer trabecular bone," J Biomater Sci Polym Ed, 1995. 7(1): p. 23-38.
20. K. Whang, et al., "A novel method to fabricate bioabsorbable scaffolds," Polymer, 1995. 36(4): p. 837-842.
21. Y.Y. Hsu, et al., "Effect of polymer foam morphology and density on kinetics of in vitro controlled release of isoniazid from compressed foam matrices," J Biomed Mater Res, 1997. 35(1): p. 107-16.
22. W.Y. Yeong, et al., "Rapid prototyping in tissue engineering: challenges and potential, " Trends Biotechnol, 2004. 22(12): p. 643-52.
23. I. Zein, et al., "Fused deposition modeling of novel scaffold architectures for tissue engineering applications," Biomaterials, 2002. 23(4): p. 1169-85.
24. K.H.Tan, et al., "Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends," Biomaterials, 2003. 24(18): p. 3115-23.
25. S.S. Kim, et al., "Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels," Ann Surg, 1998. 228(1): p. 8-13.
26. E. Khor, and L.Y. Lim, "Implantable applications of chitin and chitosan," Biomaterials, 2003. 24(13): p. 2339-49.
27. R.A.A. Muzzarelli, "Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone," Carbohydrate Polymers, 2009. 76: p. 162-182.
28. S.E. Kim, et al., "Porous chitosan scaffold containing microspheres loaded with transforming growth factor-β1: Implications for cartilage tissue engineering," Journal of Controlled Release, 2003. 91: p. 365-374.
29. C. Chatelet, O. Damour, and A. Domard, "Influence of the degree of acetylation on some biological properties of chitosan films," Biomaterials, 2001. 22(3): p. 261-268.
30. G.I. Howling, et al., "The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro," Biomaterials, 2001. 22: p. 2959-2966.
31. R. Jayakumar, et al., "Novel chitin and chitosan nanofibers in biomedical applications," Biotechnology Advances, 2010. 28: p. 142-150.
32. R. Jayakumar, et al., "Biomaterials based on chitin and chitosan in wound dressing applications," Biotechnology advances, 2011. 29(3): p. 322-337.
33. S. Ricard-Blum, and F. Ruggiero, "The collagen superfamily: from the extracellular matrix to the cell membrane," Pathologie Biologie, 2005. 53(7): p. 430-442.
34. 王純怡,膠原蛋白基質結構及多醣類組成對於細胞移入之硏究,碩士論文,國立台灣大學化學工程研究所,臺北。
35. Z. Chen, et al., "Intermolecular interactions in electrospun collagen–chitosan complex nanofibers," Carbohydrate Polymers, 2008. 72(3): p. 410-418.
論文全文使用權限:不同意授權