現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:分析鏈黴菌SCP1的D片段在接合傳遞的影響 [以論文名稱查詢館藏系統]
論文英文名稱:To analyse the effect of Streptomyces SCP1 D fragment on conjugal transfer [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:生化與生醫工程研究所
畢業學年度:101
出版年度:102
中文姓名:曾威翔
英文姓名:Wei-Shiang Tseng
研究生學號:100688002
學位類別:碩士
語文別:中文
口試日期:2013-07-31
論文頁數:70
指導教授中文名:黃志宏
口試委員中文名:楊千金;陳月茸
中文關鍵詞:鏈黴菌線型質體SCP1接合傳遞
英文關鍵詞:StreptomycesconjugationSCP1clt
論文中文摘要:鏈黴菌是一種土壤中的微生物,它具有線型的染色體以及環形或線型的可接合傳遞質體。現今較明瞭的細菌接合傳遞機制主要為大腸桿菌的環型F質體,以滾輪複製單向單股DNA進行接合傳遞,但這樣的傳遞機制無法直接套用在鏈黴菌線型DNA的傳遞機轉,而且目前對此類線型質體的接合傳遞機制也尚未清楚。已知鏈黴菌線型質體上有段clt (cis-acting-locus of transfer)序列,在接合傳遞時具有clt 序列的DNA片段能傳遞到接受株中。因此,找到鏈黴菌線型質體上的clt座落位置,將對了解線型質體接合傳遞的機制有所幫助。
目前已得知clt可能在SCP1中2.4 kb大小的片段上,且剔除前段2 kb的片段依舊不影響線型質體SCP1接合傳遞的效率,所以推斷clt就在後段的0.4 kb上,但整段2.4 kb都剔除時無法取得轉型株,因為後段約0.4 kb片段包含了kor基因的一部分,kor基因被剔除導致鏈黴菌的kil基因大量表現,使得菌體無法存活。為了繼續尋找最後0.4 kb中clt的確切位置,我先將完整的kor基因分別插入授予株與接受株的染色體DNA上,使其能穩定表現kor基因,接著將授予株中SCP1質體的kor基因剔除,並轉型帶有最後0.4 kb片段的微型線型質體並測試其接合傳遞的效率。然而剔除kor基因依舊不影響線型質體SCP1的接合傳遞效率,可是先前許嘉津將原本不具接合傳遞能力的微型質體嵌入2.4 kb clt的不同候選片段後,能具有接合傳遞的能力,所以推測最後的0.4 kb並不是SCP1最主要的clt。根據先前許嘉津的資料與這次的實驗結果,推測clt可能座落於SCP1的tra基因下游。
論文英文摘要:The soil bacteria of the genus Streptomyces contain a linear chromosome and circular or linear conjugal plasmid. Well-known, classical conjugation mechanism base on E.coli circular F-plasmid, involving a single-stranded DNA molecule transfer by rolling- circle replication. However, the mechanism is not applied to Streptomyces linear plasmid, which is not well known so far. The previous studies had shown the cis-acting-locus of transfer (clt) is required for plasmid transfer. Therefore, locating the clt region on Streptomyces linear plasmid will contribute to understand the linear plasmid conjugal transfer.
We had known the clt is probably located on the 2.4 kb size fragment of Streptomyces linear plasmid SCP1, and the transfer frequency does not influenced while the former 2 kb was deleted. Thus, we suppose the clt should be located on the rear 0.4 kb fragment. However, we could not get transformer when all the 2.4 kb was deleted, because the rear 0.4 kb contains a part of the kor gene. Knocking out the kor cause the kil gene overexpression, and the Streptomyces unable to survive. For further narrow down the clt region, I integrated one copy of kor to the chromosomes of donor and recipient respectively, drives them expressing kor constantly. And then, I knocked out the kor of SCP1, and transformed the small plasmid containing the rear 0.4 kb fragment to the donor, and exam the frequency of conjugal transfer. However, knock out the kor still not influencing the transfer frequency of SCP1, but previous experiment showed that non-transferable small plasmid become mobilizing after integrating clt candidate fragments, so we suppose the rear 0.4 kb is not the most important clt of SCP1. According to the previous data by Chia-Chin Hsu and my experiment, we guess the clt may locate on the down stream of the tra gene.
論文目次:中文摘要 i
英文摘要 iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1細菌的接合傳遞 1
1.2鏈黴菌的簡介 4
1.3鏈黴菌的線型染色體與線型質體 6
1.4鏈黴菌的接合傳遞 8
1.5 Tra protein 與 kil-kor system 9
1.6鏈黴菌的 cis-acting locus of transfer (clt) 12
第二章 材料與方法 16
2.1菌種及質體 16
2.2藥品、酵素 19
2.3培養基及緩衝溶液 19
2.4菌種之儲存 19
2.5大腸桿菌之轉型 20
2.6大腸桿菌質體之分離與純化 20
2.7鏈黴菌原生質體(protoplast)的製備與轉型 20
2.8鏈黴菌基因組DNA的分離與純化 20
2.9限制酶酵素、T4系列酵素及各式kit的處理與使用 21
2.10聚合酶連鎖反應PCR(polymerase chain reaction) 21
2.11脈衝電場型膠體電泳(pulsed-field gel electrophoresis) 21
2.12南方點墨法(Southern blot hybridization) 21
2.13鏈黴菌質體接合傳遞效率的計算(recombination frequency by
linear plasmid conjugation) 22
2.14 REDIRECT technology 22
第三章 實驗結果 23
3.1將2.4 kb的conjugal cis-acting element繼續縮小其範圍 23
3.2剔除SCP1的SCP1.91與D片段重疊的部分 27
3.3剔除SCP1.91不影響SCP1的接合傳遞效率 40
第四章 討論 43
參考文獻 46
附錄
A. Media and buffer 53
B. E. coli Competent cell preparation and transformation 55
C. Plasmid isolation from E. coli 58
D. Preparation of Streptomyces protoplast and transformation 59
E. Isolation the total DNA of Streptomyces 60
F. Polymerase Chain Reaction 61
G. Pulsed-field gel electrophoresis 62
H. Southern hybridization 64
I. REDIRECT technology 68
論文參考文獻:1. Allen, H. K., Donato, J., Wang H. H., Cloud-Hansen, K. A., Davies, J. and Handelsman, J. (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 8: 251-259.
2. Arutyunov, D. and Frost, L. S. (2013) F conjugation: Back to the beginning. Plasmid 70: 18-32.
3. Babic, A., Lindner, A. B., Vulic, M., Stewart, E. J., Radman, M. (2008) Direct visualization of horizontal gene transfer. Science 319: 1533-1536.
4. Bao, K. and Cohen, S. N. (2001) Terminal proteins essential for the replication of linear plasmids and chromosomes in Streptomyces. Genes Dev 15: 1518-1527.
5. Bao, K. and Cohen, S. N. (2003) Recruitment of terminal protein to the ends of Streptomyces linear plasmids and chromosomes by a novel telomere-binding protein essential for linear DNA replication. Genes Dev 17: 774-785.
6. Bao, K. and Cohen, S. N. (2004) Reverse transcriptase activity innate to DNA polymerase I and DNA topoisomerase I proteins of Streptomyces telomere complex. Proc Natl Acad Sci USA 101: 14361-14366.
7. Bath, J., Wu, L. J., Errington, J. and Wang, J. C. (2000) Role of Bacillus subtilis SpoIIIE in DNA transport across the mother cell-prespore division septum. Science 290: 995-997.
8. Bentley, S. D., Chater K. F., Cerdeno-Tarraga A. M., Challis, G. L., Thomson, N. R., James, K. D., Harris, D. E., Quail, M. A., Kieser, H., Harper, D., Bateman, A., Brown, S., Chandra, G., Chen, C. W., Collins, M., Cronin, A., Fraser, A., Goble, A., Hidalgo, J., Hornsby, T., Howarth, S. Huang, C. H., Kieser, T., Larke, L., Murphy, L., Oliver, K., O’Neil, S., Rabbinowitsch, E., Rajandream, M. A., Rutherford, K., Rutter, S., Seeger, K., Saunders, D., Sharp, S., Squares, R., Squares, S., Taylor, K., Warren, T., Wietzorrek, A., Woodward, J., Barrell, B. G., Parkhill, J., and Hopwood, D.A. (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141-147.
9. Bentley, S. D., Brown, S., Murphy, L. D., Harris, D. E., Quail, M. A., Parkhill, J., Barrell, B. G., McCormick, J. R., Santamaria, R. I., Losick, R., Yamasaki, M., Kinashi, H., Chen, C. W., Chandra, G., Jakimowicz, D., Kieser, H. M., Kieser, T. and Chater, K. F. (2004) SCP1, a 356,023 bp linear plasmid adapted to the ecology and developmental biology of its host, Streptomyces coelicolor A3(2). Mol Microbiol 51: 1615-1628.
10. Bey, S. J., Tsou, M. F., Huang, C. H., Yang, C. C. and Chen, C. W. (2000) The homologous terminal sequence of the Streptomyces lividans chromosome and SLP2 plasmid. Microbiology 146 (pt 4): 911-922
11. Bibb, M. J., Ward, J. M. and Hopwood, D. A. (1978) Transformation of plasmid DNA into Streptomyces at high frequency. Nature 274: 398-400.
12. Brolle, D. F., Pape, H., Hopwood, D. A. and Kieser, T. (1993) Analysis of the transfer region of Streptomyces plasmid SCP2. Mol Microbiol 10: 157-170.
13. Chang, P. C. and Cohen, S. N. (1994) Bidirectional replication from an internal origin in a linear Streptomyces plasmid. Science 265: 952-954.
14. Chen, C. W., Yu, T. W., Lin, Y, S., Kieser, H. M. and Hopwood, D. A. (1993) The conjugative plasmid SLP2 of Streptomyces lividans is a 50 kb linear molecule. Mol Microbiol 7: 925-932.
15. Clark, M., Maddera, L., Harris, R. L., Silverman P. M., Affiliations, A. (2008) F-pili dynamics by live-cell imaging. P Natl Acad Sci. USA 105: 17978-17981.
16. Doi, K., Ono, Y., Yokoyama, E., Tsukagoe, Y. and Ogata, S. (1998) Whole sequence of spoIIIE-like, sporulation-inhibitory, and transfer gene (spi) in a conjugal plasmid, pSA1.1, of Streptomyces azureus and detection of spi-like gene in the actinomycete chromosome. Biosci Biotechnol Biochem 62: 1597-1600.
17. Ducote, M. J., Prakash, S. and Pettis, G. S. (2000) Minimal and contributing sequence determinants of the cis-acting locus of transfer (clt) of streptomycete plasmid pIJ101 occur within an intrinsically curved plasmid region. J. Bacteriol 182: 6834-6841.
18. Durrenberger, M. B., Villiger, W. and Bachi, T. (1991). Conjugational junctions: morphology of specific contacts in conjugating Escherichia coli bacteria. J Struct Biol 107: 146-156.
19. Esther, R. A. (2005) Alternatives to binary fission in bacteria. Nat Rev Microbiol 3: 214-224.
20. Franco, B., Gonzalez-Ceron, G. and Servin-Gonzalez, I. (2003) Direct repeat sequences are essential for function of the cis-acting locus of transfer (clt) of Streptomyces phaeochromogenes plasmid pJV1. Plasmid 50: 242-247.
21. Frost, L. S., Ippen-Ihler, K., and Skurray, R. A. (1994) Analysis of the sequence and gene products of the transfer region of the F sex factor. Microbiol Rev 58: 162-210.
22. Grohmann, E., Muth, G. and Espinosa, M. (2003) Conjugative plasmid transfer in Gram-positive Bacteria. Microbiol Mol Biol R 67.2: 277-301.
23. Hanafusa, T. and Kinashi, H. (1992) The structure of an integrated copy of the giant linear plasmid SCP1 in the chromosome of Streptomyces coelicolor 2612. Mol Gen Genet 231: 363-368.
24. Heinemann, J. A. and Sprague, Jr. G. F. (1989) Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature 340: 205-209.
25. Hinnebusch, J. and Tilly, K. (1993) Linear plasmids and chromosomes in bacteria. Mol Microbiol 10(5): 917-922.
26. Hopwood, D. A., Harold, R. J., Vivian, A., Ferguson, H. M. (1969) A new kind of fertility variant in Streptomyces coelicolor. Genetics 62: 461-477.
27. Hopwood, D. A. (2006) Soil to genomics: the Streptomyces chromosome. Annu Rev Genet 40: 1-23.
28. Hopwood, D. A. (2007) Streptomyces in nature and medicine: the antibiotic makers. Oxford University Press, Inc.
29. Huang, C. H., Lin, Y. S., Yang, Y. L., Huang, S. W. and Chen, C.W. (1998) The telomeres of Streptomyces chromosomes contain conserved palindromic sequences with potential to form complex secondary structures. Mol Microbiol 28: 905-916.
30. Huang, C. H., Chen, C.Y., Tsai, H. H., Chen, C., Lin, Y. S. and Chen C. W. (2003) Linear plasmid SLP2 of Streptomyces lividans is a composite replicon. Mol Microbiol 47: 1563-1576.
31. Huang, C. H., Tsai, H. H., Tsay, Y. G., Chien, Y. N., Wang, S. L., Cheng, M. Y., Ke, C. H. and Chen, C. W. (2007) The telomere system of the Streptomyces linear plasmid SCP1 represents a novel class. Mol Microbiol 63: 1710-1718.
32. Ike, Y., Tanimoto, K., Tomita, H., Takeuchi, K. and Fujimoto, S. (1998) Efficient transfer of the pheromone-independent Enterococcus faecium plasmid pMG1 (Gmr) (65.1 kilobases) to Enterococcus strains during broth mating. J. Bacteriol 180: 4886-4892.
33. Kataoka, M., Seki, T. and Yoshida, T. (1991) Five genes involve in self-transmission of pSN22, a Streptomyces plasmid. J Bacteriol 173: 4220-4228.
34. Kataoka, M., Kiyose, Y. M., Michisuji, Y., Horiguchi, T., Seki, T. and Yoshida, T. (1994) Complete nucleotide sequence of the Streptomyces nigrifaciens plasmid, pSN22: Genetic organization and correlation with genetic properties. Plasmid 32: 55-69.
35. Kataoka, M., Kosono, S., Seki, T. and Yoshida, T. (1994) Regulation of the transfer genes of Streptomyces plasmid pSN22: in vivo and in vitro study of the interaction of TraRwith promoter regions. J Bacteriol 173: 4220-4228.
36. Kendall, K. J. and Cohen, S. N. (1987) Plasmid transfer in Streptomyces lividans: identification of a kil-kor system associated with the transfer region of pIJ101. J Bacteriol 169: 4177-4183.
37. Kendall, K. J. and Cohen, S. N. (1988) Complete nucleotide sequence of the Streptomyces lividans plasmid pIJ101 and correlation of the sequence with genetic properties. J Bacteriol 170: 4634-4651.
38. Kieser, T., Hopwood, D. A., Wright, H. M and Thompson, C. J. (1982) pIJ101, a multi-copy broad host-range Streptomyces plasmid: functional analysis and development of DNA colony vectors. Mol Gen Genet 185: 223-228.
39. Kinashi,H. and Shimaji-Murayama, M. (1991) Physical characterization of SCP1, a giant linear plasmid from Streptomyces coelicolor. J Bacteriol 173: 1523- 1529.
40. Kinashi,H., Shimaji-Murayama, M. and Hanafusa, T. (1991) Nucleotide sequence analysis of the unusually long terminal inverted repeats of a giant linear plasmid, SCP1. Plasmid 26: 123-130.
41. Kinashi,H., Shimaji-Murayama, M. and Hanafusa, T. (1992) Integration of SCP1, a giant linear plasmid, into the Streptomyces coelicolor chromosome. Gene 115: 35-41.
42. Kosono, S., Kataoka, M., Scki, T. and Yoshida, T. (1996) The TraB protein, which mediates the intermycelial transfer of the Streptomyces plasmid pSN22, has functional NTP-binding motifs and is localized to the cytoplasmic membrane. Mol Microbiol 19: 397-405.
43. Lawley, T. D., Klimke, W. A., Gubbins, M. J., Frost, L. S. (2003) F factor conjugation is a true type IV secretion system. FEMS Microbiol let 224: 1-15.
44. Lin, Y. S., Kieser, H. M., Hopwood, D. A. and Chen, C. W. (1993) The chromosomal DNA of Streptomyces lividans 66 is linear. Mol Microbiol 10: 923-933.
45. Maas, R. M., Götz, J., Wohlleben, W. and Muth, G. (1998) The conjugative plasmid pSG5 from Streptomyces ghanaensis DSM 2932 differs in its transfer function from other Streptomyces rolling-circle-type plasmids. Micrology 144: 2809-2817.
46. Mazodier, P. and J. Davies. (1991) Gene transfer between distantly related bacteria. Annu Rev Genet 25: 147-171.
47. Mazodier, P., R. Petter and C. Thompson. (1989) Intergeneric conjugation between Escherichia coli and Streptomyces species. J Bacteriol 171: 3583-3585.
48. Narra, H. P., and Ochman, H. (2006) Of what use is sex to bacteria? Curr Biol 16: R705-R710.
49. Pettis, G. S. and Cohen, S. N. (1994) Transfer of the pIJ101 plasmid in Streptomyces lividans requires a cis-acting function dispensable for chromosomal gene transfer. Mol Microbiol 13: 955-964.
50. Pettis, G. S. and Cohen, S. N. (1996) Plasmid transfer and expression of the transfer (tra) gene product of plasmid pIJ101 are temporally regulated during the Streptomyces lividans life cycle. Mol Microbiol 19:1127-1135.
51. Pettis, G. S. and Cohen, S. N. (2000) Mutational analysis of the tra locus of the broad-host-range Streptomyces plasmid pIJ101. J Bacteriol 182: 4500-4504.
52. Redenbach, M., Bibb, M., Gust, B., Seitz, B. and Spychaj, A. (1999) The linear plasmid SCP1 of Streptomyces coelicolor A3(2) possesses a centrally located replication origin and shows significant homology to the transposon Tn4811. Plasmid 42: 174-185.
53. Reuther, J., Gekeler, C., Tiffert, Y., Wohlleben, W. and Muth, G. (2006) Unique conjugation mechanism in mycelial streptomycetes: a DNA-binding ATPase translocates unprocessed plasmid DNA at the hyphal tip. Mol Microbiol 61:436-446.
54. Smokvina, T., Boccard, F., Pernodet, J. L., Friedmann, A. and Guerineau, M. (1991) Functional analysis of the Streptomyces ambofaciens element pSAM2. Plasmid 25: 40-52.
55. Tai, J. T. N. and Cohen, S. N. (1993) The active form of the KorB protein encoded by the Streptomyces plasmid pIJ101 is a processed product that bind differentially to the two promoters it regulates. J Bacteriol 175: 6996-7005.
56. Thoma, L. and Muth, G. (2012) Conjugative DNA transfer in Streptomyces by TraB: is one protein enough? FEMS Microbiol Lett 337: 81-88.
57. Vogelmann, J., Ammelburg, M., Finger, C., Guezguez, J., Linke, D., Flotenmeyer, M., Stierhof, Y. D., Wohlleben, W. and Muth, G. (2011) Conjugal plasmid transfer in Streptomyces resembles bacterial chromosome segregation by FtsK/SpoIIIE. EMBO J 30: 2246-2254.
58. Waters, V. L. (1999) Conjugative transfer in the dissemination of beta-lactam and aminoglycoside resistance. Front Biosci 4: D433-456
59. Wellington, E. M., Cresswell, N. and Saunders, V. A. (1990) Growth and survival of Streptomycete inoculants and characterization of its RNA transcripts. J Bacteriol 175: 37-52.
60. Yang, C. C., Huang, C. H., Li, C. Y., Tsay, Y. G., Lee, S. C. and Chen, C. W. (2002) The terminal proteins of linear Streptomyces chromosomes and plasmid: a novel class of replication priming proteins. Mol Microbiol 43: 297-305.
論文全文使用權限:不同意授權