現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:將幾丁聚醣以塗佈與電紡的方式共價鍵結於316L不鏽鋼用於動態骨母細胞培養 [以論文名稱查詢館藏系統]
論文英文名稱:Covalent Binding of Film and Nanofibers on 316L Stainless Stell and Their Performance in Dynamic Culture of Osteoblast [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:生化與生醫工程研究所
畢業學年度:101
出版年度:102
中文姓名:林文揚
英文姓名:Wen-Yang Lin
研究生學號:100688022
學位類別:碩士
語文別:中文
口試日期:2013-07-25
論文頁數:72
指導教授中文名:林忻怡
口試委員中文名:謝學真;鍾仁傑
中文關鍵詞:骨母細胞幾丁聚醣316L不鏽鋼動態培養
英文關鍵詞:OsteoblastChitosan316L Stainless SteelDynamic Culture
論文中文摘要:用於人體內或人體外的醫學器材之生醫材料,常會直接或間接的與人體組織、體液或血液等接觸,因此這些生醫材料除了一般的物理性質、化學性質外,還需考慮到與人體組織、體液或血液等接觸時的生物相容性。以不鏽鋼作為植入物,於臨床應用上,主要應用於骨折固定、人工關節、人工骨骼與血管支架等。本研究將316L不鏽鋼進行表面改質,透過塗佈與電紡技術,於表面覆蓋一層薄膜與電紡絲纖維,其後進行物理測試。於生物相容性測試的部分,本研究使用動態培養的方式,模擬生物體內的環境,進行細胞的培養與觀察。從物理測試結果可得知膜組的膨潤率與藥物釋放優於電紡組,而電紡組有較強的抗酵素降解能力。另外,在生物相容性測試方面,以CCK-8與DNA定量可得知細胞生長的趨勢,透過第I型膠原蛋白質測試、鹼性磷酸酶活性測試及鈣定量測試可得知骨母細胞分化的程度,進而分析該材料的生物相容性。實驗結果顯示,拋光組有較佳的細胞生長趨勢,而膜組有較多的膠原蛋白分泌與鈣的沉積,因此表面改質可使金屬表面提升其生物相容性。
論文英文摘要:Biomaterial of medical devices of in vivo or in vitro often touches directly or indirectly with tissue, body fluids or blood. So no matter what kind of the biomaterials properties are, it is needed to consider the biocompatibility that contact with tissue, body fluids or blood. For clinical applications, it is usually used for fracture fixation, artificial joints, artificial bone and vascular stents by using the stainless steel as implants. In this study, the surface of 316L stainless steel can be modified by coating and electro-spinning. The surface was covered with a film and electro-spinning fibers of chitosan subsequent physical testing. For biocompatibility testing, It is simulated the in vivo environment to carry out cell culture and observation by using dynamic cultured method. The result of Physical test show that film group swelling ratio and drug release is better than electro-spinning group. However, the electro-spinning group has strong anti-enzyme degradation. In addition, biocompatibility test to CCK-8 and DNA quantification can show the trend of cell growth. Through the test of type I collagen, alkaline phosphatase activity test and calcium content test can tell the degree of the osteoblast differentiation. Moreover, the biocompatibility of the material can be analyzed. From the experiment, it shows that polishing group has better cell growth trends and the film group has more collagen secretion and calcium deposition. According to the results, it is found out that surface modification allows the metal surface to enhance its biocompatibility.
論文目次:摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2研究目的 1
第二章 文獻回顧 2
2.1 硬骨組織工程 2
2.1.1 骨骼 3
2.1.2 膝關節硬骨的結構與功能 4
2.1.3 骨骼細胞 4
2.1.4骨母細胞 5
2.1.5 骨修復 7
2.2 金屬材料 8
2.2.1 不鏽鋼 10
2.3 生物反應器 12
2.3.1 生物反應器之種類 12
2.3.1.1 攪拌式生物反應器 13
2.3.1.2 滾筒式生物反應器 13
2.3.1.3 中空纖維生物反應器 14
2.3.1.4 灌流生物反應器 15
2.3.1.5 施加機械力的反應器 16
2.4 幾丁聚醣 18
2.5非類固醇消炎藥 22
第三章 實驗材料與方法 24
3.1實驗材料 24
3.1.1細胞來源 24
3.1.2樣本製作所需藥品 24
3.1.3物理測試所需藥品 25
3.1.4磷酸鹽緩衝溶液配製所需藥品 25
3.1.5細胞培養所需藥品 25
3.1.6細胞實驗所需藥品 26
3.1.7儀器設備 27
3.2實驗設計 28
3.3實驗方法 29
3.3.1樣本製作 29
3.3.2物理測試 31
3.3.2.1接觸角 31
3.3.2.2膜厚測量與電紡絲纖維粗細 31
3.3.2.3膨潤率 31
3.3.2.4酵素降解 32
3.3.2.5藥物釋放 33
3.3.3生物相容性測試 34
3.3.3.1 十倍磷酸鹽緩衝溶液配製 34
3.3.3.2培養液配製 34
3.3.3.3細胞繼代與培養 35
3.3.3.4動態培養系統架設與種細胞 36
3.3.3.5細胞活性 38
3.3.3.6 DNA定量 39
3.3.3.7 Type I collagen測試 40
3.3.3.8 ALP活性 41
3.3.3.9鈣定量 42
3.3.4 統計分析 43
第四章 實驗結果與討論 44
4.1樣本物理性質分析 44
4.1.1接觸角測試 44
4.1.2膜厚測量與電紡絲纖維粗細 45
4.1.3膨潤率 48
4.1.4酵素降解 49
4.1.5藥物釋放 52
4.2生物相容性測試 53
4.2.1細胞活性 53
4.2.2 DNA定量 54
4.2.3 Type I collagen測試 55
4.2.4 ALP活性 56
4.2.5鈣定量 57
第五章 結論 58
參考文獻 60
附錄 67
A Ninhydrin test之標準曲線 67
B Naproxen藥物濃度之標準曲線 68
C DNA濃度之標準曲線 69
D Type I collagen濃度之標準曲線 70
E ALP濃度之標準曲線 71
F CaCl2濃度之標準曲線 72
論文參考文獻:1. Y. Tabata, "Significance of release technology in tissue engineering," Drug Discovery Today, Vol. 10, no. 23-24, 2005, pp. 1639-1646.
2. R. G. LeBaron and K.A. Athanasiou, "Ex vivo synthesis of articular cartilage," Biomaterials, Vol. 21, 2000, pp. 2575-2587.
3. P. H. Chao, W. Grayson, and G. Vunjak-Novakovic, "Engineering cartilage and bone using human mesenchymal stem cells," J Orthop Sci, Vol. 12, no. 4, 2007, p p. 398-404.
4. L. S. Turek, Orthopaedics: Principles and Their Applications, U.K.: J.B. Lippincott Company, 1984, pp. 31-100.
5. K. Takatsuka, T. Yamamuro,,T. Nakamura, et al., "Bone-bonding behavior of titanium alloy evaluated mechanically with detaching failure load," J Biomed Mater Res, Vol. 29, 1995, pp. 157-163.
6. 楊榮森,骨質疏鬆症:病因、診斷、治療,台北: 合記圖書出版社,2008,第1-15頁。
7. S. H. Lee and H. Shin, "Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering," Adv Drug Deliv Rev, Vol. 59, no. 4-5, 2007, pp. 339-59.
8. A. Boskey and N. Pleshko Camacho, "FT-IR imaging of native and tissue-engineered bone and cartilage," Biomaterials, Vol. 28, no. 15, 2007, pp. 2465-78.
9. E. S. Huether and L.K. Mccance, Understanding Pathophysiology, US: Elsevier Science Health Science Division, 2012.
10. I. V. Sikavitsas, S.J. Temenoff, and G.A. Mikos, "Biomaterials and bone mechanotransduction," Biomaterials, Vol. 22, 2001, pp. 2581-2593.
11. M. Owen, Lineage of osteogenic cells and their relationship to the stromal system, Amsterdam: Elsevier, 1985, pp. 1-25.
12. J. N. Beresford, "Osteogenic stem cells and the stromal system of bone and marrow," Clin Orthop, Vol. 240, 1989, pp. 270-240.
13. S. E. Haynesworth, J. Goshirna, V. M. Goldberg, et al., "Characterization of cells with osteogenic potential from human marrow," Bone, Vol. 13, no. 1, 1982, pp. 81-88.
14. R. R. Recker, Bone histomorphometry: techniques and interpretation, L: CRC Press, 1983, pp. 143-223.
15. M. H. Frost, Intermediary organization of the skeleton, FL: CRC Press, 1986.
16. L. C. Fredric and J.F. Murray, Disorder of bone and mineral metabolism, LCC: Raven Press, 1992, pp. 355-380.
17. J. P. Bilezikian, L.G. Raisz, and T.J. Martin, Principles of Bone Biology, Carolina: Academic Press, 2008, pp. 59-81.
18. 骨質再建,http://vschool.scu.edu.tw/biology/content/cytology/Bone%20remodeling.htm,存取日期:2013年5月14日。
19. J. M. Pettifor and H. Juppner, Pediatric Bone: Biology & Diseases, Carolina: Academic Press, 2011, pp. 43-75.
20. 王世晞、陳德皓、徐志宏,基礎組織學,臺北市: 藝軒圖書出版社,1992。
21. 邱家昌,「骨折癒合」,生物醫學第一卷,第三期,2008,第264-273頁。
22. 金屬在生醫材料的應用,http://web.nchu.edu.tw/~weite/chi/submaster/Metallic%20materials%20in%20biomedical%20applications.pdf,存取日期:2013年5月14日。
23. J. Kline, Handbook of biomedical engineering, Carolina: Academic press, 1988, pp. 154-173.
24. D. F. Williams, Biocompatibility of clinical implant materials, FL: CRC Press, 1981, pp. 45-98.
25. H. M. Cobb, The History of Stainless Steel, US: Asm Intl, 2010, pp. 59-91, 241-244.
26. S. Nagarajan and N. Rajendran, "Surface characterisation and electrochemical behaviour of porous titanium dioxide coated 316L stainless steel for orthopaedic applications," Applied Surface Science, Vol. 255, no. 7, 2009, p p. 3927-3932.
27. V. Muthukumaran, V. Selladurai, S. Nandhakumar, et al., "Experimental investigation on corrosion and hardness of ion implanted AISI 316L stainless steel," Materials & Design, Vol. 31no. 6, 2010, p p. 2813-2817.
28. Agata Roguskaa, Sachiko Hiromoto, Akiko Yamamoto, et al., "Collagen immobilization on 316L stainless steel surface with cathodic deposition of calcium phosphate," Applied Surface Science, Vol. 257, no. 11, 2011, pp. 5037-5045.
29. Bordji, G., et al., 116valuation of the effect of three surface treatments on the biocompatibility of 316L stainless steel using human differentiated cells. Biomaterials, 1996. 17: p. 491-500.
30. T. Hryniewicz, R. Rokicki, and K. Rokosz, "Surface characterization of AISI 316L biomaterials obtained by electropolishing in a magnetic field," Surface and Coatings Technology, Vol. . 202, no. 9, 2008, p p. 1668-1673.
31. O. Öztürk, "Microstructural and mechanical characterization of nitrogen ion implanted layer on 316L stainless steel," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 267, no. 8-9, 2009, pp. 1526-1530.
32. Gopinath Mani, D. Marc Feldman, Devang Patel, et al., "Coronary stents: a materials perspective," Biomaterials, Vol. 28, no. 9, 2007, pp. 1689-710.
33. J. KH and K. GG., "Tissue engineering with chondrocytes," Facial Plastic Surgery, Vol. 18, no. 1, 2002, pp. 59-68.
34. A. B. Yeatts and J.P. Fisher, "Bone tissue engineering bioreactors: Dynamic culture and the influence of shear stress," Bone, Vol. 48, no. 2, 2011, pp. 171-181.
35. P. Godara, C. D. McFarland, and R. E. Nordon, "Design of bioreactors for mesenchymal stem cell tissue engineering," Journal of Chemical Technology & Biotechnology, Vol. 83, no. 4, 2008, pp. 408-420.
36. S. M, Y. H, and V. JP, "In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold," Tissue Engineering, Vol. 10, 2004, pp. 33-41.
37. E. A. Botchwey, S. R. Pollack, E. M. Levine, et al., "Bone tissue engineering in a rotating bioreactor using a microcarrier matrix system," J Biomed Mater Res, Vol. 55, 2001, pp. 242-253.
38. E. A. Botchwey, S. R. Pollack, S. El-Amin, et al., "Human osteoblast-like cells in three-dimensional culture with fluid flow," Biorheology, Vol. 40, 2003, pp. 299-306.
39. X. J. Yu, E. A. Botchwey, E. M. Levine, et al., "Bioreactor-based bone tissue engineering: the influence of dynamic flow on osteoblast phenotypic expression and matrix mineralization," Proc Natl Acad Sci U S A, Vol. 101, no. 31, 2004, pp. 11203-8.
40. E. R. Spier and J.B. Griffiths, Animal cell biotechnology, Carolina: Academic Press, 1994.
41. S. P. Wolfe, E. Hsu, L. M. Reid, et al., "A novel multi-coaxial hollow fiber bioreactor for adherent cell types. Part I: hydrodynamic studies," Biotechnology and Bioengineering, Vol. 77, no. 1, 2002, pp. 83-90.
42. M. Y, "Convective flow through a hollow fiber bioartificial liver," Artif Organs, Vol. 27, no. 11, 2003, pp. 1041-1049.
43. J. M. Macdonald, S. P. Wolfe, Indrajit Roy-Chowdhury, et al., "Effect of flow configuration and membrane characteristics on membrane fouling in a novel multicoaxial hollow-fiber bioartificial liver," Annals New York Academy of Sciences, Vol. 944, 2001, pp. 334-343.
44. I. Jasmund, A. Langsch, R. Simmoteit, et al., "Cultivation of primary porcine hepatocytes in an OXY-HFB for use as a bioartificial liver device," Biotechnol Prog, Vol. 18, no. 4, 2002, pp. 839-846.
45. E. Morsiani, D. Galavotti, A.C. Puviani, et al., "Radial flow bioreactor outperforms hollow-fiber modules as a perfusing culture system for primary porcine hepatocytes," Transplantation Proceedings, Vol. 32, 2000, pp. 2715-2718.
46. I. Martin, D. Wendt, and M. Heberer, "The role of bioreactors in tissue engineering," Trends Biotechnol, Vol. 22, no. 2, 2004, pp. 80-86.
47. G. B, "Scale-up of suspension and anchorage-dependent animal cells," Molecular Biotechnology, Vol. 17, 2001, pp. 225-238.
48. P. P, M. T, and L. BR, "Role of nutrient supply on cell growth in bioreactor design for tissue engineering of hematopoietic cells," Biotechnology and Bioengineering, Vol. 89, 2005, pp. 743-758.
49. Milica Radisic, Hyoungshin Park, Fen Chen, et al., "Biomimetic approach to cardiac tissue engineering: Oxygen carriers and channeled scaffolds," Tissue Engineering, Vol. 12, 2006, pp. 2077-2091.
50. R. L. Carrier, M. Rupnick, R. Langer, et al., "Perfusion improves tissue architecture of engineered cardiac muscle," Tissue Engineering, Vol. 8, 2002, pp. 175-188.
51. M. Radisic, M. Euloth, L. Yang, et al., "High-density seeding of myocyte cells for cardiac tissue engineering," Biotechnol Bioeng, Vol. 82, no. 4, 2003, pp. 403-414.
52. M. A. Brown, R.K. Iyer, and M. Radisic, "Pulsatile perfusion bioreactor for cardiac tissue engineering," Biotechnology Progress, Vol. 24, 2008, pp. 907-920.
53. H. C. Chen and Y.C. Hu, "Bioreactors for tissue engineering," Biotechnol Lett, Vol. 28, no. 18, 2006, pp. 1415-1423.
54. L. D. Andrews, Comprehensive nanoscience and technology, Carolina: Academic Press, 2011, pp. 175-211.
55. C. R. Ethier and A.C. Simmons, Introductory biomechanics: from cells to organisms, New York: Cambridge University Press, 2007.
56. C. Slack, M.H. Flint, and B.M. Thompson, "The effect of tensional load on isolated embryonic chick tendons in organ culture," Connect. Tissue Res, Vol. 12, no. 3-4, 1984, pp. 229-247.
57. S. Nishioka, K. Fukuda, and S. Tanaka, "Cyclic stretch increases alkaline phosphatase activity of osteoblast-like cells : a role for prostaglandin E2," Bone Miner, Vol. 21, no. 2, 1993, pp. 141-150.
58. G. Vunjak-Novakovic, G. Altman, R. Horan, et al., "Tissue engineering of ligaments," Annu Rev Biomed Eng, Vol. 6, 2004, pp. 131-156.
59. F. W. Janssen, J. Oostra, A. V. Oorschot, et al., "A perfusion bioreactor system capable of producing clinically relevant volumes of tissue-engineered bone: In vivo bone formation showing proof of concept," Biomaterials, Vol. 27, 2006, pp. 315-323.
60. G. N. Bancroft, V. I. Sikavitsas, Juliette van den Dolder, et al., "Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner," PNAS, Vol. 99, 2002, pp. 12600-12605.
61. 幾丁質-幾丁聚醣發展史,http://www.biochina.com.tw/biotech/chitosan-info/61-2011-06-04-07-59-37,存取日期:2013年5月14日。
62. M.M. Leane, R. Nankervis, A. Smith, et al., "Use of the ninhydrin assay to measure the release of chitosan from oral solid dosage forms," International Journal of Pharmaceutics, Vol. 271, no. 1-2, 2004, pp. 241-249.
63. P. J. VandeVord, W. T. Howard Matthew, S. P. DeSilva, et al., "Evaluation of the biocompatibility of a chitosan scaffold in mice," J Biomed Mater Res, Vol. 59, no. 3, 2002, pp. 585-590.
64. H. Onishi and Y. Machida, "Biodegradation and distribution of water-soluble chitosan in mice," Biomaterials, Vol. 20, 1999, pp. 175-182.
65. N.V.M.R. Kumar , "A review of chitin and chitosan applications," Reactive & functional polymers, Vol. 46, 2000.
66. N. R. Patel, Stereoselective biocatalysis, New York: Marcel Dekker, 2000, pp. 1-27.
67. L. Steenkamp and D. Brady, "Screening of commercial enzymes for the enantioselective hydrolysis of R,S-naproxen ester," Enzyme and Microbial Technology, Vol. 32, no. 3-4, 2003, pp. 472-477.
68. J. P. Harrington and E. Lodewijk, "Twenty Years of Naproxen Technology," Organic Process Research & Development, Vol. 1, 1997, pp. 72-76.
69. NAPROXEN DELAYED-RELEASE TABLETS, http://www.medicineonline.com/drugs/n/4266/NAPROXEN-DELAYED-RELEASE-TABLETS.html,存取日期:2013年5月14日。
70. K. D. Rainsford, "Ibuprofen: pharmacology, efficacy and safety," Inflammopharmacology, Vol. 17, no. 6, 2009, pp. 275-342.
71. P. Arpornmaeklong, N. Suwatwirote1, P. Pripatnanont, et al., "Growth and differentiation of mouse osteoblasts on chitosan-collagen sponges," Int J Oral Maxillofac Surg, Vol. 36, no. 4, 2007, pp. 328-337.
72. Juliette Van Den Dolder, Rob Mooren, P. G. Annelies Vloon, et al., "Platelet-Rich Plasma: Quantification of Growth Factor Levels and the Effect on Growth and Differentiation of Rat Bone Marrow Cells," Tissue Engineering, Vol. 12, 2006, pp. 3067-3073.
73. J.V.D. Dolder, P.H.M. Spauwen, and J.A. Jansen, "Evaluation of Various Seeding Techniques for Culturing Osteogenic Cells on Titanium Fiber Mesh," Tissue Engineering, Vol. 9, 2003, pp. 315-325.
74. M. van der Zande, X. F. Walboomers, A. Briest, et al., "The effect of combined application of TGFβ‐1, BMP‐2, and COLLOSS® E on the development of bone marrow derived osteoblast‐like cellsin vitro," Journal of Biomedical Materials Research Part A, Vol. 86A, no. 3, 2008, pp. 788-795.
75. Ljupcho Prodanov, W. A. Jack van Loon, Joost te Riet, et al., "Substrate nanotexture and hypergravity through centrifugation enhance initial osteoblastogenesis," Tissue Eng Part A, Vol. 19, no. 1-2, 2013, pp. 114-24.
76. Hengquan Liu, Yuancong Zhao, Si Cheng, et al., "Syntheses of novel chitosan derivative with excellent solubility, anticoagulation, and antibacterial property by chemical modification," Journal of Applied Polymer Science, Vol. 124, no. 4, 2011, pp. 2641-2648.
77. S. B. Rao and C.P. Sharma, "Use of chitosan as a biomaterial: Studies on its safety and hemostatic potential," Journal of Biomedical Materials Research, Vol. 34, 1997, pp. 21-28.
78. K. Gupta and F. Jabrail, "Effects of degree of deacetylation and cross-linking on physical characteristics, swelling and release behavior of chitosan microspheres," Carbohydrate Polymers, Vol. 66, no. 1, 2006, pp. 43-54.
79. Sheng Meng, Zongjun Liu, Li Shen, Zhang Guo, et al., "The effect of a layer-by-layer chitosan-heparin coating on the endothelialization and coagulation properties of a coronary stent system," Biomaterials, Vol. 30, no. 12, 2009, pp. 2276-2283.
80. Sebastian Bauer, Patrik Schmuki, Klaus von der Mark, et al., "Engineering biocompatible implant surfaces," Progress in Materials Science, Vol. 58, no. 3, 2013, pp. 261-326.
81. Yu Ban, Ying-ying Wu, Tao Yu, Ning Geng, et al., "Response of osteoblasts to low fluid shear stress is time dependent," Tissue Cell, Vol. 43, no. 5, 2011, pp. 311-317.
82. S. Kapur, D.J. Baylink, and K.H. William Lau, "Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways," Bone, Vol. 32, no. 3, 2003, pp. 241-251.
83. Peter Pivonka, Jan Zimak, D. W. Smith, et al., "Model structure and control of bone remodeling: a theoretical study," Bone, Vol. 43, no. 2, 2008, pp. 249-263.
84. Songzi Kou, Leiting Pan, Danny van Noort, et al., "A multishear microfluidic device for quantitative analysis of calcium dynamics in osteoblasts," Biochem Biophys Res Commun, 2011. 408(2): p. 350-355.
論文全文使用權限:不同意授權