現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:Benzimidazol-iminocoumarin衍生物合成及光學特性研究 [以論文名稱查詢館藏系統]
論文英文名稱:The Synthesis and Photocharacteristics of Benzimidazol-iminocoumarin Derivatives [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:化學工程研究所
畢業學年度:97
出版年度:98
中文姓名:簡嘉良
英文姓名:Chia-Liang Chien
研究生學號:96738050
學位類別:碩士
語文別:中文
口試日期:2009-06-22
論文頁數:119
指導教授中文名:黃聲東
口試委員中文名:郭憲壽;林俊茂
中文關鍵詞:香豆素染料敏化太陽能電池光電轉換效率染料敏化劑長波長Hammett方程式
英文關鍵詞:coumarindye-sensitized solar cellsolar-to-electricity conversion efficiencylong wavelengthhammett equation
論文中文摘要:香豆素(coumarin)具有良好的螢光特性、光穩定性以及量子效率,應用十分廣泛,但是其衍生物benzimidazol-iminocoumarin的應用不多,且沒人將其運用在敏化染料太陽能電池和長波長螢光劑上。本篇論文分為兩個部分:
第一部分:將Benzimidazol-iminocoumarin衍生物用於光敏化染料太陽能電池上。
現今高效能的敏化染料太陽能電池之染料,其成本仍然過高,為了降低其成本,我們利用已知染料benzimidazol-iminocoumarin衍生物,運用少步驟合成,成功開發出符合敏化染料太陽能電池之染料,其中4a、4b都具有不錯的莫耳吸收係數;4a之光電轉換效率最高可達到0.767%。
第二部分:以Benzimidazol-iminocoumarin的衍生物為基底在長波長上建立新的可調節式螢光染料。
長波長螢光劑常被運用在活體光學顯影以及生化檢測上,是一種即時、非破壞性而且簡單的新工具。本實驗利用benzimidazol-iminocoumarin衍生物合成出具有guanidine結構的化合物,在苯環對位上接上強拉電子基,使得化合物螢光釋放往紅光偏移,達到長波長範圍。化合物8a、8f之最大螢光釋放達到600、601nm,符合長波長染料之條件。在苯環對位上接上強弱不同之拉電子基,造成其螢光釋放波長的不同而且符合Hammett方程式。
論文英文摘要:This thesis consists of two parts: The first part is the application of benzimidazol-iminocoumarin derivatives as new photosensitizer in DSSC. The second part is establishment of new tunable fluorophores dye based on benzimidazol-iminocoumarin derivatives in long wavelength region. The first part, we employed a series of benzimidazole-iminocoumarin derivatives and studied their photosensitizer properties. The photophysical and electrochemical studies showed that these benzimidazole-iminocoumarin dyes are suitable as light harvesting sensitizers in DSSC application. The dyes 4a and 4b showed better extinction efficiency. The cell consisted of dye 1a generated the highest solar-to-electricity conversion efficiency of 0.767%.
In the second part, long-wavelength ( λem > 600 nm ) fluorescent dyes have been on spotlight as new tools for noninvasive and in vivo optical imaging. We prepared a series of benzimidazole-iminocoumarin derivatives which is incorporated a guanidine moiety. The emission maxima of the dyes synthesized herein in linear relationship with electron withdrawing effects on the guanidine substituents. The dyes 8a and 8f have emission maxima at 600 and 601 nm.
論文目次:中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 前言 1
第二章 文獻回顧與探討 4
2.1 太陽能電池的種類 4
2.1.1 單晶矽太陽能電池 4
2.1.2 多晶矽太陽能電池 5
2.1.3 非晶矽太陽能電池 5
2.1.4 有機高分子太陽能電池 5
2.2 染料敏化太陽能電池 6
2.3 染料敏化太陽能電池工作原理 7
2.4 染料敏化劑 9
2.5 光電轉換效率 13
2.6 研究動機與目的 14
第三章 實驗方法與設備 16
3.1 實驗儀器 16
3.2 實驗試藥 17
3.3 實驗方法與流程 18
3.3.1 合成圖 18
3.3.2 化合物2之合成方法 18
3.3.3 化合物3之合成方法 19
3.3.4 化合物4a~4b之合成方法 20
3.4 紫外光/可見光光譜儀檢測 22
3.5 螢光光譜儀檢測 22
3.6 氧化還原電位之檢測 22
第四章 結果與討論 24
4.1 化合物合成圖 24
4.2 化合物之光學性質以及氧化還原電位 25
4.3 化合物之光電轉換效率 28
第五章 結論 29
第六章 文獻回顧與探討 31
6.1 螢光原理 31
6.2 螢光染料 32
6.3 長波長螢光染料 33
6.4 生化上長波長螢光染料之種類 34
6.5 研究動機與目的 36
第七章 實驗方法與設備 39
7.1 實驗儀器 39
7.2 實驗試藥 40
7.3 實驗方法與流程 41
7.3.1 合成圖 41
7.3.2 化合物6a~6e之合成方法 42
7.3.3 化合物8a~8j之合成方法 43
7.4 紫外光/可見光光譜儀檢測 49
7.5 螢光光譜儀檢測 49
7.6 量子效率之計算 49
第八章 結果與討論 51
8.1 化合物合成圖 51
8.2 化合物之光學性質 52
8.3 Hammett方程式 56
8.4 化合物在不同溶劑下之光學性質 58
第九章 結論 60
參考文獻 61
附錄 65
論文參考文獻:參考文獻

[1] 盧凌; 王仁宗; 張榮錡; 王金漢; 莊昭文; 陶占瑞. 香豆素衍生物的應用。
Chemistry (THE CHINESE CHEM. SOC., TAIPEI) 2000, 58(3), 367-385.
[2] E. Roussakis , F. Liepouri, A. P. Nifli , E. Castanas , T. G. Deligeorgiev , H. E. Katerinopoulos. ICPBC and C12-ICPBC: Two new red emitting, fluorescent Ca2+ indicators excited with visible light. Cell Calcium 2006, 39, 3-11.
[3] H. E. Katerinopoulos. The coumarin moiety as chromophore of fluorescent ion indicators in biological systems. Current Pharmaceutical Design 2004,10(30), 3835-3852.
[4] A.S. Vasylevska, A. A. Karasyov, S. M. Borisov, C. Krause. Novel coumarin- based fluorescent pH indicators, probes and membranes covering a broad pH range. Anal Bioanal Chem 2007, 387, 2131-2141.
[5] S. V. Ukhov, M. E. Kon’shin, V. V. Novikova, and T. F. Odegova. Synthesis and antimicrobial activity of silver salts of substituted 2-iminocoumarin-3-carboxylic acid amides. Pharmaceutical Chemistry Journal 2004, 38(4), 186-187.
[6] K. Komatsu, Y. Urano, H. Kojima, T. Nagano. Development of an Iminocoumarin- Based Zinc Sensor Suitable for Ratiometric Fluorescence Imaging of Neuronal Zinc. J. Am. Chem. Soc. 2007, 129, 13447- 13454.
[7] 許智偉, 何文岳,化工資訊與商情,2003年11月,NO.5
[8] B. O’Regan, M. Grätzel. A low-cost high efficiency solar cell based on dye- Sensitized colloidal TiO2 film. Nature 1991, 353, 737-740.
[9] N. Robertson. Optimizing dyes for dye-sensitized solar cells. Angew. Chem. Int. Ed. 2006, 45, 2338-2345.
[10]M. Grätzel. Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 2005, 44, 6841-6851.
[11]Md. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C. H. Fischer, M. Gratzel. Acid-base equilibria of (2,2¢-bipyridyl-4,4¢-dicarboxylic acid)ruthenium(ii) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania. Inorg.Chem. 1999, 38, 6298-6305.
[12] X. Ma, J. Hua, W. Wu, Y. Jin, F. Meng, W. Zhan, H. Tian. A high- efficiency cyanine dye for dye-sensitized solar cells. Tetrahedron 2008, 64, 345-350.
[13]Q. Wang, W. M. Campbell, E. E. Bonfantani, K. W. Jolley, D. L. Officer, P. J. Walsh, K. Gordon, R. Humphry-Baker, M. K. Nazeeruddin, M. Gra1tzel. Efficient light harvesting by using green zn-porphyrin-sensitized nanocrystalline TiO2 films. J. Phys. Chem. B 2005, 109, 15397-15409.
[14]M. Velusamy, K. R. J. Thomas, J. T. Lin, Y. C. Hsu, K. C. Ho. Organic dyes incorporating low-band-gap chromophores for dye-sensitized solar cells. Org. Lett. 2005, 7(10), 1899-1902.
[15]K. Hara, M. Kurashige, S. Ito, A. Shinpo, S. Suga, K. Sayama and H. Arakawa. Novel polyene dyes for highly efficient dye-sensitized solar cells. Chem. Commun. 2003, 252-253.
[16] K. Hara, Z. S. Wang, T. Sato, A. Furube, R. Katoh, H. Sugihara, Y. Dan-oh, C. Kasada, A. Shinpo, S. Suga. Oligothiophene-containing coumarin dyes for efficient dye-sensitized solar cells. J. Phys. Chem. B 2005, 109, 15476-15482.
[17]K. Hara, M. Kurashige, Y. Dan-oh, C. Kasada, A. Shinpo, S. Suga, K. Sayama, H. Arakawa. Molecular design of coumarin dyes for stable and efficient organic dye-sensitized solar cells. New J. Chem. 2003, 27, 783-785.
[18]Z. S. Wang, Y. Cui, Y. Dan-oh, C. Kasada, A. Shinpo, K. Hara. Molecular design of coumarin dyes for stable and efficient organic dye-sensitized solar cells. J. Phys. Chem. C 2008, 112, 17011-17017.
[19] M. Matsui, Y. Hashimoto, K. Funabiki, J. Jin, T. Yoshida, H. Minoura. Application of near-infrared absorbing heptamethine cyanine dyes as sensitizers for zinc oxide solar cell. Synth. Metals 2005, 148, 147-153.
[20] Y.S. Chen, C. Li, Z.H. Zeng, W.B. Wang, X.S. Wang, B.W. Zhang. Efficient electron injection due to a special adsorbing group’s combination of carboxyl and hydroxyl: dye-sensitized solar cells based on new hemicyanine dyes. J. Mater. Chem. 2005, 15, 1654-1661.
[21]http://gitatruth.googlepages.com/electronics.htm
[22]R. Weissleder. A clearer vision for in vivo imaging. Nat. Biotechnol. 2001, 19, 316- 317.
[23]K. Umezawa, A. Matsui, Y. Nakamura, D. Citterio, K. Suzuki. Bright, color- tunable fluorescent dyes in the vis/nir region: establishment of new “tailor-made” multicolor fluorophores based on borondipyrromethene. Chem. Eur. J. 2009, 15, 1096-1106.
[24] J. Nathans. Molecular biology of visual pigments. Annu.Rev. Neurosci 1987, 10, 163-194.
[25] V. Buschmann, K. D. Weston, M. Sauer. Spectroscopic study and evaluation of red-absorbing fluorescent dyes. Bioconjugate Chem. 2003, 14, 195-204.
[26]G. Cosa, K. S. Focsaneanu, J. R. N. McLean, J. P. McNamee, J. C. Scaiano. Photophysical properties of fluorescent DNA dyes bound to single- and double-stranded DNA in aqueous buffered solution. Photochem. Photobiol. 2001, 73, 585-599.
[27] W. L. Zhou, P. Yan, J. P. Wuskell, L. M. Loew, S. D. Antic. Intracellular long-wavelength voltage-sensitive dyes for studying the dynamics of action potentials in axons and thin dendrites. J. Neurosci. Methods 2007, 164, 225-239.
[28]A. Waggoner, S. Kenneth, Covalent labeling of proteins and nucleic acids with fluorophores, Methods Enzymol. 1995, 246, 362-373.
[29]T. Karstens, K. Kobs. Rhodamine B and rhodamine 101 as reference substances for fluorescence quantum yield measurements. J. Phys. Chem.1980, 84, 1871-1872.
[30]L. G. Lee, G. M. Berry, C. H. Chen. Vita Blue: A new 633-nm excitable fluorescent dye for cell analysis. Cytometry 1989, 10, 151-164.
[31] J. E. Whitaker, R. P. Haugland, F. G. Prendergast. Spectral and photophysical studies of benzo[c]xanthene dyes: Dual emission pH sensors. Anal. Biochem. 1991, 194, 330-344.
[32] R. P. Haugland, M. T. Z. Spence, I. D. Johnson, A. Basey. The Handbook: A Guide to Fluorescent Probes and Labeling Technologies, 10th ed. 2005.
[33] X. Peng, D. R. Draney, W. M. Volcheck, G. R. Bashford, D. T. Lamb, D. L. Grone, Y. Zhang, C. M. Johnson. Phthalocyanine dye as an extremely photostable and highly fluorescent near-infrared labeling reagent. Proc. SPIE-Int. Soc. Opt. Eng. 2006, 6097E, 1-12.
[34]K. Umezawa, Nakamura, H. Makino, D. Citterio, K. Suzuki, J. Am. Chem. Soc. 2008, 130, 1550-1551.
[35] J. Horiba. A Guide to Recording Fluorescence Quantum Yields 2002, Jobin Yvon Ltd. 2 Dalston Gardens, Stanmore, Middlesex HA7 1BQ UK.
[36] F. A. Carey, R. J. Sundberg. Advanced Organic Chemistry ,Third Edition, Plenum Press, NY, 1990.
[37] S.A. El-Daly, M. Gaber, Y.S. El-Sayed. Photophysical parametersand laser performance of 3-(40- dimethylaminophenyl)-1-(2-furanyl)prop-2-en-1-one (DMAFP): A newlaserdye. Optics & Laser Technology 2009, 41, 727-733.
論文全文使用權限:同意授權於2011-07-03起公開