現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:使用金奈米粒子即時比色顯像偵測氟陰離子 [以論文名稱查詢館藏系統]
論文英文名稱:A rapid colorimetric visualization assay of fluoride ion by using gold nanoparticles [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:化學工程研究所
畢業學年度:99
出版年度:100
中文姓名:古峻安
英文姓名:Jiun-An Gu
研究生學號:98738046
學位類別:碩士
語文別:中文
口試日期:2011-06-17
論文頁數:64
指導教授中文名:黃聲東
指導教授英文名:Sheng-Tung Huang
口試委員中文名:汪昆立;郭憲壽;林俊茂
口試委員英文名:Kun-Li Wang;Hsien-Shou Kuo;Chun-Mao Lin
中文關鍵詞:氟陰離子金奈米粒子比色顯像分析
英文關鍵詞:Gold nanoparticlesFluoride IonColorimetric visualization assay
論文中文摘要:對於開發生物陰離子檢測器一直令人有著高度的興趣,因為這些陰離子在一些生理學的過程中扮演很重要的角色,其中氟陰離子在健康與環境爭議上有著相當重要的地位,在此我們設計與合成出一種即時偵測氟陰離子的新型隱藏式奈米金聚集探針,可運用於建立微量簡易辨別氟離子平台,即時偵測環境危害物。利用氟離子脫去在保護在酚基上的矽基團,引發了探針分子內的1,6-重排脫去反應,隨即會放出會雙硫基直鏈分子,導致其自發性不可逆的聚集金奈米粒子,達到顯色偵測的目的。奈米金靈敏的反應性與聚集變色的特性來檢測在水溶液中的氟陰離子,此種檢測方法,有極佳的選擇性,可以在水溶液中使用不受干擾,而且還可以快速、裸眼來辨識低濃度(0.5mM)氟離子的存在,並且可以使用紫外線光譜儀簡易的達到定量效果。
論文英文摘要:The development of sensors for important biological anions is currently of great interest because of their indispensable roles in vital physiological process. Fluoride ion is one of the most attractive targets because of their considerable significance for health and environmental issues. Here, we have prepared a new switch-on latent AuNP agglomerization probe to detect fluoride ions in the presence of gold nanoparticles. The fluoride ion removes the silyl moiety on the phenol of the AuNP agglomerization probe followed by 1,6-rearrangement-elimination reaction and concomitant ejects the AuNP agglomerization dithiol linkers, which are spontaneous and irreversible at physiological temperatures in aqueous media. The AuNP agglomerization dithiol-modified flexible linker facilitates the aggregation of AuNP and leads to colorimetric change which is easily visualized by naked-eyes. The color generated by the cascade reactions was specific and insensitive to various anions. Furthermore, the assay platform developed herein was a sensitive colorimetric visualization assay for the quantitatively measurement of fluoride ion within micromolar range.
論文目次:目錄
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VIII
第一章 前言 1
第二章 文獻探討 3
2.1 氟離子檢測器 3
2.1.1氫鍵型氟離子探針 3
2.1.2 配位型氟離子探針 4
2.1.3親核型氟離子探針 5
2.1.4 氟離子探針文獻 6
2.2 奈米金粒子 8
2.2.1 奈米金比色探針 8
2.2.2 雙硫醇基隱藏式奈米金探針 10
2.3 隱藏式螢光探針與釋放機制 12
第三章 氟離子探針設計 13
3.1 氟離子探針設計概念與偵測機制 13
第四章 實驗方法與討論 15
4.1 儀器與試藥 15
4.1.1 實驗儀器 15
4.1.2 實驗藥品 15
4.2 合成步驟與討論 17
4.2.1化合物4-(tritylthio)benzenamine (1c)之合成步驟 17
4.2.2化合物N,N’-Bis[4-(tritylthio)phenyl]- 3,6,9-trioxaundecanedicarboxamide(2c)之合成步驟 18
4.2.3化合物{4-[tert-butyl(dimethyl)silyl]oxy} benzaldehyde(3c)之合成步驟 19
4.2.4化合物{4-[tert-butyl(dimethyl)silyl] phenyl} methanol(3d)之合成步驟 20
4.2.5化合物tert-butyl [4- (chloromethyl) phenoxy] dimethylsilane (3e)之合成步驟 21
4.2.6化合物N,N’- Bis{4-[tert-butyl(dimethyl) silyloxy]benzyl(4-phenyl)sulfane }-3,6,9-trioxaundecanedicarboxamide (3f)之合成步驟 22
4.2.7化合物{4-[tert-butyl(diphenyl)silyl] oxy}benzaldehyde (4c)之合成步驟 23
4.2.8化合物{4-[tert-butyl(diphenyl)silyl] phenyl}methanol (4d)之合成步驟 24
4.2.9化合物tert-butyl [4- (chloromethyl) phenoxy]diphenylsilane(4e)之合成步驟 25
4.2.10化合物N,N’- Bis{4-[tert-butyl (diphen yl)silyloxy]benzyl(4-phenyl)sulfane }-3,6,9-trioxaundecanedicarboxamide(4f)之合成步驟 26
4.3 檢測氟離子實驗步驟 27
第五章 結果與討論 28
5.1 探針分子前驅物 28
5.2總合成方法與流程 28
5.2.1化合物2c合成方法: 29
5.2.2化合物3f合成方法: 30
5.2.3化合物4f合成方法: 31
5.3 實驗條件 32
5.3.1 配置磷酸鹽緩衝溶液(phosphate buffer) 32
5.3.2 選擇溶劑 32
5.3.3 選擇PH值 33
5.3.4 選擇反應溫度 34
5.4 檢測氟離子 35
5.4.1探針3f與4f檢測氟離子效果 35
5.4.2 3f探針之選擇性測試 36
5.4.3 3f探針定量實驗 37
第六章 結論 39
參考文獻 40
附錄 44
附圖1 化合物2c之 1H – NMR 圖譜 44
附圖2 化合物3c之 1H – NMR 圖譜 45
附圖3 化合物3d之 1H – NMR 圖譜 46
附圖4 化合物3e之 1H – NMR 圖譜 47
附圖5 化合物3f之1H – NMR 圖譜 48
附圖6 化合物4c之 1H – NMR 圖譜 49
附圖7化合物4d之 1H – NMR 圖譜 50
附圖8化合物4e之 1H – NMR 圖譜 51
附圖9化合物4f之1H – NMR 圖譜 52
附圖10 化合物2c之13C – NMR 圖譜 53
附圖11 化合物3f之 13C – NMR 圖譜 54
附圖12化合物4c之 13C – NMR 圖譜 55
附圖13 化合物4d之 13C – NMR 圖譜 56
附圖14 化合物4e之 13C – NMR 圖譜 57
附圖15 化合物4f之 13C – NMR 圖譜 58
附圖16 化合物4c Mass – EI 圖譜 59
附圖17 化合物4d Mass – EI 圖譜 60
附圖18 化合物4e Mass – EI 圖譜 61
附圖19 化合物3f Mass - ESI- 圖譜 62
附圖20 化合物4f Mass – ESI- 圖譜 63
附圖21 化合物2c Mass – ESI- 圖譜 64
論文參考文獻:[1] X. Y. Xu, M. S. Han, C. A. Mirkin, ”A Gold-
Nanoparticle-Based Real-Time Colorimetric Screening Method for Endonuclease Activity and Inhibition” Angew.Chem., vol. 46, No. 19, 2007, pp. 3538–3540.
[2] 陳東煌,複合奈米粒子-有趣的人造原子,科學發展月刊408期,2006年12月,第40-45頁。
[3] 生醫奈米科技教學資源中心,教育部「生物及醫學科技人才培育先導型計畫」-生醫奈米技術,台北:教育部,2007年12月。
[4] Y. D. Choi, N. H. Ho, C. H. Tung, “Sensing Phosphatase Activity by Using Gold Nanoparticles” Angew. Chem., vol. 46, No. 5, 2007, 707–709
[5] R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin,“Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles” Science., vol. 277, No. 5329, 1997, pp. 1078-1081.
[6] C. Nakai, J. A. Thomas, “Properties of a Phosphoprotein Phosphatase from Bovine Heart with Activity on Glycogen Synthase, Phosphorylase, and Histone” Biological Chemistry., vol. 249, No. 20, 1974, pp. 6459-6467.
[7] R. Y. Kannan, H. J. Salacinski, P. E. Butler, G. Hamilton, A. M. Seifalian, “Current status of prosthetic bypass grafts: a review” Biomedical Materials Research., vol. 78, No. 1, 2005, pp. 570-581.
[8] J. Aigueperse, P. Mollard, D. Devilliers, M. Chemla, R. Faron, R. Romano, J. P. Cuer, “Fluorine Compounds, Inorganic” Ullmann’s Encyclopedia of Industrial Chemistry,. pp. 307.
[9] S. O. Griffin, E. Regnier, P. M. Griffin, V. Huntley, “Effectiveness of fluoride in preventing caries in adults” Dental Research., vol. 86, No. 5, 2007, pp. 410-415.
[10] I. M. Rabinowitch, “Acute Fluoride Poisoning” Can Med Assoc J., 1945, vol. 52, pp. 345-349.
[11] W. H. O. “Fluoride in Drinking-water: Background document for development of WHO Guidelines for Drinking-water Quality” World Health Organization, 2004, pp. 2.
[12] W. H. O. “Environmental Health Criteria 227: Fluorides” World Health Organization, 2002, pp. 38.
[13] A. F. Holleman, E. Wiberg, "Inorganic Chemistry" San Diego: Academic Press, 2001.
[14] V. Sheshanath, Bhosale, V. Sidhanath, Bhosale, B. Mohan, Kalyankar, J. S. Langford, “A Core-Substituted Naphthalene DiimideFluoride Sensor” Org. Lett., vol. 11, No. 23, 2009, pp. 5418-5421.
[15] Z. H. Lin, S. J. Ou, C. Y. Duan, B. G. Zhang, Z. P. Bai, “Naked-eye detection of fluoride ion in water: a remarkably selective easy-to-prepare test paper” Chem. Commun., 2006, pp. 624-626.
[16] X. Gao, H. Zheng, G. Q. Shang, J. G. Xu, “Colorimetric detection of fluoride in an aqueous solution using Zr(IV)–EDTA complex and a novel hemicyanine dye” Talanta., vol. 73, No. 4, 2007, pp. 770-775.
[17] S. Y. Kim, J.M. Park, M. S. Koh, S. B. Park, J. I. Hong, “Fluorescent probe for detection of fluoride in water and bioimaging in A549 human lung carcinoma cells” Chem. Commun., 2009, pp. 4735-4737.
[18] 何宜蓉、葉明功、湯松陵,奈米科技:奈米金之臨床應用與發展,臨床藥學雜誌(第26卷4期),2010年12月,第34-40頁。
[19] 吳民耀、劉威志,表面電漿子理論與模擬,物理雙月刊(第28卷2期),2006年4月,第486-496頁。
[20] 李映瑩、蔡宗霖、謝達斌,金奈米粒子於生物醫學上的應用,化學(第68卷1期),2010年3月,第11-20 頁。
[21] S. Watanabe, H. Seguchi, K. Yoshida, K. Kifune, T. Tadaki, H. Shiozaki,“Colorimetric detection of fluoride ion in an aqueous solution using a thioglucose-capped gold
nanoparticle“ Tetrahedron Letters., vol. 46, No. 51, 2005, pp. 8827-8829.
[22] J. W. Liu,Y. Lu, “Accelerated Color Change of Gold Nanoparticles Assembled by DNAzymes for Simple and Fast Colorimetric Pb2+ Detection” J. Am. Chem. Soc., vol.126, No. 39, 2004, pp. 12298-12305.
[23] J. W. Liu, Y. Lu, “Stimuli-Responsive Disassembly of Nanoparticle Aggregates for Light-Up Colorimetric Sensing” J. Am. Chem. Soc., vol. 127, No. 36, 2005, pp. 12677-12683.
[24] R. R. Liu, R. S. Liew, J. Zhou, B. G. Xing, “A Simple and Specific Assay for Real-Time Colorimetric Visualization of β-Lactamase Activity by Using Gold Nanoparticles” Angew. Chem., vol. 46, No. 46, 2007, pp. 8799-8803.
[25] S.T. Huang, C. J. Teng, Y. H. Lee, J. Y. Wu, K. L. Wang, C. M. Lin, “Design and Synthesis of a Long-Wavelength Latent Fluorogenic Substrate for Salicylate Hydroxylase: A Useful Fluorimetric Indicator for Analyte Determination by Dehydrogenase-Coupled Biosensors” Anal. Chem., vol. 82, No. 17, 2010, pp. 7329-7334.
[26] H. C. Huang, S.T. Huang, K. L. Wang, S. T. Huang, H. Y. Lin, C. M. Lin, “Development of a sensitive long-wavelength fluorogenic probe for nitroreductase: A new fluorimetric indictor for analyte determination by dehydrogenase-coupled biosensors” Biosensors and Bioelectronics., vol. 26, No. 8, 2011, pp. 3511-3516.
[27] R.P. George, P. G. Matthew, J. M. Katherine, H. Ernest, P. Robin K, J. C. Chapuis, J. M. Schmidt, “Antineoplastic Agents. 465. Structural Modification of Resveratrol: Sodium Resverastatin Phosphate” J. Med. Chem., vol. 45, No. 12, 2002, pp. 2534-2542.
[28] S. Meyer, R. Louis, B. Metz, Y. Agnus, A. Varnek, M. Gross, “Unprecedented role of water in self-assembly of potential molecular tweezers” New J. Chem., vol. 24, 2000, pp. 371-376.
論文全文使用權限:同意授權於2011-08-10起公開