現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:合成苯並咪唑衍生物作為液態及膠態電解液添加劑探討於染料敏化太陽能電池之光電性質與長效穩定性 [以論文名稱查詢館藏系統]
論文英文名稱:Influence of benzimidazole-based additives in liquid and quasi-solid state electrolytes on dye-sensitized solar cells performances and long-term stability [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:化學工程研究所
畢業學年度:100
出版年度:101
中文姓名:賈玉銘
英文姓名:Yu-Ming Chia
研究生學號:99738015
學位類別:碩士
語文別:中文
口試日期:2012-06-01
論文頁數:80
指導教授中文名:黃聲東
口試委員中文名:汪昆立;郭憲壽
中文關鍵詞:染料敏化太陽能電池電解液添加劑苯並咪唑
英文關鍵詞:Dye-sensitized solar cellselectrolyteadditiveBenzimidazole
論文中文摘要:染料敏化太陽能電池具有低成本及高效率的特性,近幾年來為太陽能領域的研究重點,而於電解液中加入添加劑可有效提升電池的光電轉換效率,本次研究對於染料敏化太陽能電池中的電解液添加劑,以苯並咪唑為基礎進行改質,合成8種新型添加劑,並與目前廣泛使用的商用添加劑MBI (1-methylbenzimidazole)及4-TBP (4-tert-butylpridine)進行光電性質的比較,可發現添加劑1-Hexyl-1H-benzimidazole (B4)於使用不同溶劑的電解液中,效率皆高於商用添加劑,且於使用Acetonitrile為電解液溶劑的情況下,只需添加低濃度(0.125M)的B4即可達到較商用添加劑還高的光電轉換效率。
此外,為了解決電池長效穩定性的問題,本次研究運用兩種高分子PVDF–HFP (poly(vinylidene fluoride-co-hexafluoropropylene))及PAN–VA (poly(acrylonitrile-co-vinyl acetate)) 加入含不同添加劑的電解液中配製成膠態電解液,對於光電性質、入射單色光子-電子轉換效率(IPCE)、電化學阻抗分析(EIS)以及長效穩定性進行探討,由上述檢測中可知,加入添加劑B4於膠態電解液中亦可得到較商用添加劑還高的光電轉換效率,主要原因在於添加劑B4可以有效地降低電解液與吸附染料TiO2之間的電阻,進而提升光電轉換效率,且於使用Acetonitrile為電解液溶劑的情況下,加入添加劑B4可延緩電池之光電轉換效率衰退的速率,這也驗證了添加劑B4擁有其優勢及發展空間。
論文英文摘要:Recently, adding 1-methlybenzimidazole (MBI) or 4-tert-butylpyridine (4-TBP) into electrolyte is the convenient way to suppress the dark current and improve dye-sensitized solar cells (DSSCs) efficiency. But it still has some problems of them, such as crystal formation of MBI and expensive price of 4-TBP. In this work, we synthesized a series of benzimidazole-based additives to overcome the problems. Moreover, in order to extend the long-term stability, gel-type electrolytes were fabricated with poly(vinylidene fluoride-co -hexafluoropropylene) (PVDF–HFP) and poly(acrylonitrile-co-vinyl acetate) (PAN-VA), respectively.
Higher efficiency of DSSCs could be achieved by using 1-Hexyl -1H-benzimidazole (B4) than other commercial additives in liquid and quasi-solid state electrolytes with acetonitrile (AN) or 3-methoxypropionitrile (3-MPN). Using different types of electrolytes, the efficiency didn’t change a lot with adding B4. In addition, B4 could get higher efficiency but didn’t need to add as higher amounts as MBI or 4-TBP by using AN as solvent. Long-term stability indicated that B4 could extend the period before efficiency decay by using the solvent of AN. Besides, from EIS studies, B4 could decrease the resistance between electrolyte and dye absorbed TiO2, resulting in getting higher efficiency. Therefore B4 could be a more efficient additive for DSSCs.
論文目次:中文摘要 i
英文摘要 iii
誌謝 v
目錄 vi
表目錄 x
圖目錄 xi
第一章 緒論 1
第二章 文獻回顧 2
2.1 染料敏化太陽能電池 2
2.2 染料敏化太陽能電池的工作原理 3
2.3 染料 4
2.4 奈米半導體電極 7
2.5 電解液 8
2.5.1 液態電解液 8
2.5.2 擬固態(膠態)電解液 10
2.5.3 固態電解液 11
2.6 電解液添加劑 12
2.7 研究動機與目的 14
第三章 實驗藥品與儀器 15
3.1 實驗藥品 15
3.2 實驗儀器 17
第四章 實驗方法與流程 19
4.1 添加劑合成方法 19
4.1.1 合成路徑 19
4.1.2 1-(2-Methoxy-ethyl)-1H-benzimidazole (B1)及1-Octyl-1H-benzimidazole (B3)之合成方法 19
4.1.3 3-(1H-benzimidazol-1-yl)-N,N-dimethylpropan-1-amine
(B2) 及1-Hexyl-1H-benzimidazole (B4)之合成方法 20
4.1.4 1-[1-(2-Methoxy-ethyl)-1H-benzimidazol-2-yl]-ethanol (HB1) 及2-[1-(2-Methoxy-ethoxy)-ethyl]-1-(2-methoxy
-ethyl)-1H-benzimidazole (HB2)之合成方法 21
4.1.5 1-(1-Hexyl-1H-benzimidazol-2-yl)-ethanol (HB3)及1-Hexyl-2-(1-hexyloxy-ethyl)-1H-benzimidazole (HB4)
之合成方法 22
4.1.6 添加劑圖譜鑑定 23
4.2 染料敏化太陽能電池的製備方法 24
4.2.1 染料敏化太陽能電池的製備流程圖 24
4.2.2 FTO導電玻璃的切割與清洗 24
4.2.3 電解液的製備 25
4.2.4 工作電極及反電極的製備 26
4.2.5 染料敏化太陽能電池染料吸附程序及電池封裝 27
4.3 染料敏化太陽能電池的分析方法 28
4.3.1 光電轉換效率分析(IV curve) 29
4.3.2 入射單色光子-電子轉換效率(IPCE) 30
4.3.3 電化學阻抗分析(EIS) 31
4.3.4 長效穩定度測試(Long-term stability) 33
第五章 結果與討論 34
5.1 不同添加劑對染料敏化太陽能電池效率的影響 34
5.1.1 使用不同添加劑於3-MPN下的效率影響 34
5.1.2 使用不同添加劑於AN下的效率影響 36
5.2 添加劑濃度測試 38
5.2.1 使用最佳效率的添加劑於3-MPN下的濃度效應 38
5.2.2 使用最佳效率的添加劑於AN下的濃度效應 39
5.3 不同添加劑於膠態電解液中的影響 41
5.3.1 膠態電解液於3-MPN下的效率影響 41
5.3.2 膠態電解液於AN下的效率影響 43
5.4 不同添加劑的IPCE測試 45
5.4.1 不同添加劑於3-MPN下的IPCE測試 45
5.4.2 不同添加劑於AN下的IPCE測試 49
5.5 液態及膠態電解液之長效性測試 52
5.5.1 不同添加劑於3-MPN下的長效穩定性測試 52
5.5.2 不同添加劑於AN下的長效穩定性測試 54
5.6 電化學阻抗(EIS)分析結果 56
5.6.1 不同添加劑於液態電解液之電化學阻抗分析結果 57
5.6.2 不同添加劑於液態電解液之電化學阻抗分析結果 58
5.6.3 0.25M B4於不同型態電解液之電化學阻抗分析結果 60
第六章 結論 61
參考文獻 62
附錄 69
附圖1 添加劑B1之1H-NMR圖譜 69
附圖2 添加劑B2之1H-NMR圖譜 70
附圖3 添加劑B3之1H-NMR圖譜 71
附圖4 添加劑B4之1H-NMR圖譜 72
附圖5 添加劑HB1之1H-NMR圖譜 73
附圖6 添加劑HB2之1H-NMR圖譜 74
附圖7 添加劑HB2之Mass-EI圖譜 75
附圖8 添加劑HB2之13C-NMR圖譜 76
附圖9 添加劑HB3之1H-NMR圖譜 77
附圖10添加劑HB4之1H-NMR圖譜 78
附圖11添加劑HB4之Mass-EI圖譜 79
附圖12添加劑HB4之13C-NMR圖譜 80
論文參考文獻:[1] B. O’Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films” Nature 1991, 353, 737-740
[2] A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, Md. K. Nazeeruddin, Eric W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin, M. Grätzel, “Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency” Science, 2011, 334, 629-633
[3] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Grätzel, “Conversion of light to electricity by cis- X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes” J. Am. Chem. Soc. 1993, 115, 6382-6390
[4] F. Sauvage, J. D. Decoppet, M. Zhang, S. M. Zakeeruddin, P. Comte, M. Nazeeruddin, P. Wang, and M. Grätzel, “Effect of Sensitizer Adsorption Temperature on the Performance of Dye-Sensitized Solar Cells” J. Am. Chem. Soc. 2001, 133, 9304-9310
[5] N. Robertson, “Optimizing dyes for dye-sensitized solar cells” Angew. Chem. Int. Ed., 2006, 45, 2338-2345
[6] T. Kitamura, M. Ikeda, K. Shigaki, T. Inoue, N. A. Anderson, X. Ai, T. Lian, and S. Yanagida, “Phenyl-Conjugated Oligoene Sensitizers for TiO2 Solar Cells” Chem. Mater., 2004, 16, 9, 1806-1812
[7] K. Hara, Z. S. Wang, T. Sato, A. Furube, R. Katoh, H. Sugihara, Y. Dan-oh, C. Kasada, A. Shinpo, and S. Suga, “Oligothiophene-Containing Coumarin Dyes for Efficient Dye-Sensitized Solar Cells” J. Phys. Chem. B, 2005, 109, 32, 15476-15482
[8] J. H. Yum, D. P. Hagberg, S. J. Moon, K. M. Karlsson, T. Marinado, L. Sun, A. Hagfeldt, M. K. Nazeeruddin, M. Grätzel, “A Light-Resistant Organic Sensitizer for Solar-Cell Applications” Angew. Chem. Int. Ed., 2009, 48, 1576 –1580
[9] K. Do, D. Kim, N. Cho, S. Paek, K. Song, J. Ko, “New Type of Organic Sensitizers with a Planar Amine Unit for Efficient Dye-Sensitized Solar Cells” Org. Lett., 2012, 14, 1, 222-225
[10] Y. Bai, J. Zhang, D. Zhou, Y. Wang, M. Zhang, P. Wang, “Engineering Organic Sensitizers for Iodine-Free Dye-Sensitized Solar Cells: Red-Shifted Current Response Concomitant with Attenuated Charge Recombination” J. Am. Chem. Soc., 2011, 133, 11442–11445
[11] T. Bessho, S. M. Zakeeruddin, C. Y. Yeh, Eric W. G. Diau, M. Grätzel, “Highly Efficient Mesoscopic Dye-Sensitized Solar Cells Based on Donor–Acceptor-Substituted Porphyrins” Angew. Chem. Int. Ed., 2010, 49, 6646-6649
[12] F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin, M. Grätzel, “Enhance the Optical Absorptivity of Nanocrystalline TiO2 Film with High Molar Extinction Coefficient Ruthenium Sensitizers for High Performance Dye-Sensitized Solar Cells” J. Am. Chem. Soc., 2008, 130, 10720–10728
[13] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Grätzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers” J. Am. Chem. Soc., 2005, 127, 16835-16847
[14] G. Redmond, D. Fitzmaurice, M. Grätzel, “Visible Light Sensitization by cis-Bis(thiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(II) of a Transparent Nanocrystalline ZnO Film Prepared by Sol-Gel Techniques” Chem. Mater., 1994, 6, 5, 686–691
[15] S. Ferrere, A. Zaban, and B. A. Gregg, “Dye Sensitization of Nanocrystalline Tin Oxide by Perylene Derivatives” J. Phys. Chem. B, 1997, 101, 23, 4490–4493
[16] K. Sayama, H. Sugihara, H. Arakawa, “Photoelectrochemical Properties of a Porous Nb2O5 Electrode Sensitized by a Ruthenium Dye” Chem. Mater., 1998, 10, 12, 3825–3832
[17] M. Y. El Zayat, A. O. Saed and M. S. El-Dessouki, “Photoelectrochemical properties of dye sensitized Zr-doped SrTiO3 electrodes” Int. J. Hydrogen Energy, 1998, 23, 4, 259-266
[18] S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%” Thin Solid Films, 2008, 516, 4613-4619
[19] M. Grätzel, “Photoelectrochemical cells” Nature, 2001, 414, 338-334
[20] N. G. Park, J. van de Lagemaat, A. J. Frank, “Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells” J. Phys. Chem. B, 2000, 104, 8989-8994
[21] N. G. Park, G. Schlichtho1rl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, and A. J. Frank, “Dye-Sensitized TiO2 Solar Cells: Structural and Photoelectrochemical Characterization of Nanocrystalline Electrodes Formed from the Hydrolysis of TiCl4” J. Phys. Chem. B, 1999, 103, 3308–3314
[22] M. D. McGehee, “Paradigm Shifts in Dye-Sensitized Solar Cells” Science, 2011, 334, 607-608
[23] H. Tian, X. Jiang, Z. Yu, L. Kloo, A. Hagfeldt, L. Sun, ” Efficient Organic-Dye-Sensitized Solar Cells Based on an Iodine-Free Electrolyte” Angew. Chem. Int. Ed., 2010, 49, 7328 –7331
[24] C. Teng, X. Yang, C. Yuan, C. Li, R. Chen, H. Tian, S. Li, A. Hagfeldt, L. Sun, “Two Novel Carbazole Dyes for Dye-Sensitized Solar Cells with Open-Circuit Voltages up to 1 V Based on Br−/Br3− Electrolytes” Org. Lett., 2009, 11, 5542–5545
[25] G. Oskam, B. V. Bergeron, G. J. Meyer, P. C. Searson, “Pseudohalogens for Dye-Sensitized TiO2 Photoelectrochemical Cells” J. Phys. Chem. B, 2001, 105, 6867–6873
[26] P. Wang, S. M. Zakeeruddin, J. E. Moser, R. Humphry-Baker, and M. Grätzel, “A Solvent-Free, SeCN-/(SeCN)3- Based Ionic Liquid Electrolyte for High-Efficiency Dye-Sensitized Nanocrystalline Solar Cells” J. Am. Chem. Soc., 2004, 126, 7164–7165
[27] Y. Ni, Z. Jin, Y. Fu, “Electrodeposition of p-Type CuSCN Thin Films by a New Aqueous Electrolyte With Triethanolamine Chelation” J. Am. Ceram. Soc., 2007, 90, 2966-2973
[28] H. J. Snaith, L. Schmidt-Mende, “Advances in Liquid-Electrolyte and Solid-State Dye-Sensitized Solar Cells” Adv. Mater., 2007, 19, 3187–3200
[29] F. F. Santiago, J. Bisquert, L. Cevey, P. Chen, M. Wang, S. M. Zakeeruddin, M. Grätzel, “Electron Transport and Recombination in Solid-State Dye Solar Cell with Spiro-OMeTAD as Hole Conductor” J. Am. Chem. Soc., 2009, 131, 558–562
[30] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Grätzel, “A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte” Nature materials, 2003, 2, 402-407
[31] C. P. Lee, P. Y. Chen , R. Vittal, K. C. Ho, “Iodine-free high efficient quasi solid-state dye-sensitized solar cell containing ionic liquid and polyaniline-loaded carbon black” J. Mater. Chem., 2010, 20, 2356-2361
[32] K. C. Huang, P. Y. Chen, R. Vittal, K. C. Ho, “Enhanced performance of a quasi-solid-state dye-sensitized solar cell with aluminum nitride in its gel polymer electrolyte” Sol. Energy Mater. Sol. Cells, 2011, 95, 1990-1995
[33] Y. J. Kim, J. H. Kim, M.-S. Kang, M. J. Lee, J. Won, J. C. Lee, Y. S. Kang, “Supramolecular Electrolytes for Use in Highly Efficient Dye-Sensitized Solar Cells” Adv. Mater., 2004, 16, 19, 1753–1757
[34] O.A. Ileperuma, M.A.K.L. Dissanayake, S. Somasunderam, L.R.A.K. Bandara, “Photoelectrochemical solar cells with polyacrylonitrile-based and polyethylene oxide-based polymer electrolytes” Sol. Energy Mater. Sol. Cells, 2004, 84, 117–124
[35] H. Yang, M. Huang, J. Wu, Z. Lan, S. Hao, J. Lin, “The polymer gel electrolyte based on poly(methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells” Mater. Chem. Phys., 2008, 110, 38–42
[36] C. L. Chen, H. Teng, Y. L. Lee, “Preparation of highly efficient gel-state dye-sensitized solar cells using polymer gel electrolytes based on poly(acrylonitrile-co-vinyl acetate)” J. Mater. Chem., 2011, 21, 628–632
[37] J. R. Durrant and S. A. Haque, “Solar cells: A solid compromise” Nature materials, 2003, 2, 362-363
[38] A. F. Nogueira, J. R. Durrant, M. A. De Paoli, “Dye-Sensitized Nanocrystalline Solar Cells Employing a Polymer Electrolyte” Adv. Mater., 2001, 13, 11, 826-830
[39] Y. Saito, N. Fukuri, R. Senadeera, T. Kitamura, Y. Wada, S. Yanagida, “Solid state dye sensitized solar cells using in situ polymerized PEDOTs as hole conductor” Electrochem. Comm., 2004, 6, 1, 71-74
[40] B. O’Regan, F. Lenzmann, R. Muis, J. Wienke, “A Solid-State Dye-Sensitized Solar Cell Fabricated with Pressure-Treated P25-TiO2 and CuSCN: Analysis of Pore Filling and IV Characteristics” Chem. Mater., 2002, 14, 12, 5023-5029
[41] H. Wang, H. Li, B. Xue, Z. Wang, Q. Meng, L. Chen, “Solid-State Composite Electrolyte LiI/3-Hydroxypropionitrile/SiO2 for Dye-Sensitized Solar Cells” J. Am. Chem. Soc., 2005, 127, 17, 6394-6401
[42] H. Wang, X. Zhang, F. Gong, G. Zhou, and Z. S. Wang, “Novel Ester-Functionalized Solid-State Electrolyte for Highly Efficient All-Solid-State Dye-Sensitized Solar Cells” Adv. Mater., 2012, 24, 121-124
[43] G. Boschloo, L. Häggman, A. Hagfeldt, “Quantification of the Effect of 4-tert-Butylpyridine Addition to I-/I3- Redox Electrolytes in Dye-Sensitized Nanostructured TiO2 Solar Cells” J. Phys. Chem. B, 2006, 110, 13144-13150
[44] N. Kopidakis, N. R. Neale, A. J. Frank, “Effect of an Adsorbent on Recombination and Band-Edge Movement in Dye-Sensitized TiO2 Solar Cells: Evidence for Surface Passivation” J. Phys. Chem. B, 2006, 110, 12485-12489
[45] J. Shi, B. Peng, J. Pei, S. Peng, J. Chen, “An inexpensive and efficient pyridine-based additive for the electrolyte of dye-sensitized solar cells” Journal of Power Sources, 2009, 193, 878-884
[46] J. Zhao, F. Yan, L. Qiu, Y. Zhang, X. Chen, B. Sun, “Benzimidazolyl functionalized ionic liquids as an additive for high performance dye-sensitized solar cells” Chem. Commun., 2011, 47, 11516–11518
[47] P. T. Nguyen, A. R. Andersen, E. M. Skou, T. Lund, “Dye stability and performances of dye-sensitized solar cells with different nitrogen additives at elevated temperatures—Can sterically hindered pyridines prevent dye degradation?” Solar Energy Materials & Solar Cells, 2010, 94, 1582–1590
[48] H. Kusama, H. Arakawa, “Influence of benzimidazole additives in electrolytic solution on dye-sensitized solar cell performance” Journal of Photochemistry and Photobiology A: Chemistry, 2004, 162, 441–448
[49] H. Kusama, H. Arakawa, “Influence of pyrazole derivatives in I-/I3- redox electrolyte solution on Ru(II)-dye-sensitized TiO2 solar cell performance” Solar Energy Materials & Solar Cells, 2005, 85, 333–344
[50] H. Kusama, H. Arakawa, “Influence of quinoline derivatives in I-/I3- redox electrolytesolution on the performance of Ru(II)-dye-sensitizednanocrystalline TiO2 solar cell” Journal of Photochemistry and Photobiology A: Chemistry, 2004, 165, 157–163
[51] A. Fischer, H. Pettersson, A. Hagfeldt, G. Boschloo, L. Kloo, M. Gorlov, “Crystal formation involving 1-methylbenzimidazole in iodide/triiodide electrolytes for dye-sensitized solar cells” Solar Energy Materials & Solar Cells, 2007, 91, 1062-1065
[52] Q. Wang, J. E. Moser, and M. Grätzel, “Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells” J. Phys. Chem. B, 2005, 109, 14945-14953
[53] L. Han, N. Koide, Y. Chiba and T. Mitate, “Modeling of an equivalent circuit for dye-sensitized solar cells” Appl. Phys. Lett., 2004, 84, 2433
[54] V. Suryanarayanan, K. M. Lee, W. H. Ho, H. C. Chen, K. C. Ho, “A comparative study of gel polymer electrolytes based on PVDF-HFP and liquid electrolytes, containing imidazolinium ionic liquids of different carbon chain lengths in DSSCs”, Solar Energy Materials & Solar Cells, 2007, 91, 1467-1471
[55] V. Suryanarayanan, K. M. Lee, J. G. Chen, K. C. Ho, “High performance dye-sensitized solar cells containing 1-methyl-3-propyl imidazolinium iodide-effect of additives and solvents”, Journal of Electroanalytical Chemistry, 2009, 633, 146-152
論文全文使用權限:不同意授權