現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:結合電紡與冷凍乾燥技術製備雙層多孔性皮膚支架 [以論文名稱查詢館藏系統]
論文英文名稱:Preparation of a Bi-layer Porous Skin Scaffold Fabricated via Electrospinning and Freeze-drying Techniques [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:化學工程研究所
畢業學年度:100
出版年度:101
中文姓名:陳信宏
英文姓名:Shin-Hung Chen
研究生學號:99738056
學位類別:碩士
語文別:中文
口試日期:2012-07-13
論文頁數:86
指導教授中文名:林忻怡
指導教授英文名:Hsin-Yi Lin
口試委員中文名:蔡偉博;王孟菊;鍾仁傑
中文關鍵詞:電紡冷凍乾燥奈米纖維幾丁聚醣聚乙烯醇果膠戊二醛纖維母細胞
英文關鍵詞:ElectrospinningFreeze-dryingNanofiberChitosanPolyvinyl AlcoholPectinGlutaraldehydeFibroblasts
論文中文摘要:本實驗以幾丁聚醣製作雙層複合式人造皮膚支架,作為全層皮膚修復使用。利用冷凍乾燥法製備多孔性真皮層,再以電紡方式將緻密的奈米絲狀結構覆蓋其上,形成表皮層。在此製備過程中,兩層中間會形成一層薄膜,似皮膚中的基底膜,分隔兩層中不同的細胞,使得整體結構較傳統單層支架更接近真實皮膚。
複合支架以戊二醛交聯,穩定其物理結構。在降解測試中,其孔狀及纖維結構可維持七天以上,足夠時間使皮膚生長修復;膨潤率測試中,膨潤後體積變化甚小,不會隨時間變化擠壓周圍健康皮膚;由各支架拉伸測試得知,此雙層結構較傳統單層結構具較高的機械強度,更接近真實皮膚。在電子顯微鏡下觀察發現細胞在此支架中會隨時間快速增長,並產生胞外基質(膠原蛋白)。
實驗結果顯示,雙層複合式皮膚支架結構與自然皮膚相似,有更佳的結構穩定性及機械強度;並有極高的細胞相容性,可誘導細胞生長進入支架內部。
論文英文摘要:In the present study, we used chitosan to make a bi-layered composite artificial skin construct for full-thickness skin repair. The epidermal layer was constructed from a nano-fiber matrix, and the dermal layer was similar to porous sponge structure. In this process, the dermal layer forms a built-in basal membrane. This built-in basal membrane can separate the different cells into two layers that better simulate natural skin structure.
This bi-layered composite artificial skin scaffold has to cross-link with glutaraldehyde to stabilize the physical structure. In degradation test, this porous, nano-fiber structure can be maintained for more than 7 days, which is enough time to allow for skin growth and repair. In swelling test, the variation of swelling volume is within a narrow range and will not change with time to cause extrusion to the surrounding healthy skin. In tensile strength test, the mechanical strength of bi-layered structure is higher than the traditional single-layer and approach the natural skin. The cells will grow rapidly with time, and examination via electron microscope shows that these cells produce extracellular matrix (collagen).
The study results indicate that a bi-layered composite artificial skin structure is more similar than the traditional artificial structure to natural skin structure, and with better structural stability and mechanical strength, and with high cell compatibility which can induce cell growth into the scaffolds.
論文目次:摘 要 i
ABSTRACT ii
誌謝 iv
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 皮膚簡介 3
2.1.1 皮膚之結構 3
2.1.2 傷口癒合之機制 4
2.2人造皮膚應用 5
2.2.1 人造皮膚 5
2.3 電紡技術 6
2.3.1 電紡絲(Electrospinning)介紹 6
2.3.2 電紡絲(Electrospinning)原理 8
2.3.3 各種參數對電紡絲的影響 8
2.4 冷凍乾燥原理 12
2.5 幾丁聚醣 13
2.5.1 幾丁聚醣之結構特性 13
2.6 果膠 15
2.5.1 果膠之結構特性 15
2.7 聚乙烯醇 17
2.5.1聚乙烯醇之結構特性 17
2.8 交聯處理 18
第三章 實驗材料與方法 20
3.1 實驗材料 20
3.1.1 電紡溶液配置及交聯處理所需藥品 20
3.1.2 冷凍乾燥溶液配置及交聯處理所需藥品 21
3.1.3 細胞來源 21
3.1.4 細胞培養用藥品 21
3.1.5 儀器設備 23
3.1.6 溶液配製 25
3.2 實驗方法 27
3.2.1 實驗設計 27
3.2.2 實驗流程 27
3.2.3 溶液製備 28
3.2.4 雙層多孔性複合支架製備及參數設定 29
3.2.5 交聯處理 33
3.3 支架物理特性測試 33
3.3.1 掃描式電子顯微鏡(SEM) 33
3.3.2 電紡絲直徑分析 34
3.3.3 吸水率 (Water absorption) 35
3.3.4 降解測試 (Degradation analysis) 35
3.3.5 拉伸測試 (Tensile properties) 36
3.4 纖維母細胞(L929)在支架上的活性測試 38
3.4.1 細胞培養 38
3.4.2 細胞數目測定 39
3.4.3 細胞繼代 39
3.4.4 接種細胞前的樣本前處理 40
3.4.5 細胞接種 40
3.4.6 DNA定量 41
3.4.7 掃描式電子顯微鏡觀察細胞生長 42
3.4.8 細胞生長於支架內之組織切片觀察 43
3.5 統計分析 43
第四章 實驗結果與討論 44
4.1 雙層多孔性複合支架外觀 44
4.1.1 雙層多孔性複合式支架 44
4.2 雙層多孔性複合支架物理性質測試 49
4.2.1 掃描式電子顯微鏡觀察 49
4.2.2 雙層多孔性複合支架電紡層之奈米纖維直徑分析 53
4.2.3 雙層多孔性複合支架之吸水率測試分析 55
4.2.4 雙層多孔性複合支架之降解測試 57
4.2.5 各支架拉伸測試 (Tensile test) 60
4.3 纖維母細胞在雙層多孔性複合支架上的活性測試 66
4.3.1 DNA定量 66
4.3.2 掃描式電子顯微鏡觀察細胞生長 68
4.3.3 細胞生長於雙層多孔性複合支架內之切片觀察 73
第五章 結論 76
參考文獻 78
附錄 86
論文參考文獻:Ahn, Y. C., S. K. Park, et al. (2006). "Development of high efficiency nanofilters made of nanofibers." Current Applied Physics 6: 1030-1035.
Balasubramani, M., T. Kumar, et al. (2001). "Skin substitutes: a review." Burns 27: 534–544.
Beele, H. (2002). "Artificial skin: past, present and future." International Journal of Artificial Organs 25: 163-173.
Berger, J., M. Reist, et al. (2004). "Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications." European Journal of Pharmaceutics and Biopharmaceutics 57: 19-34.
Bhardwaj, N. and S. C. Kundu (2010). "Electrospinning: A fascinating fiber fabrication technique." Biotechnology Advances 28: 325-347.
Boateng, J. S., K. H. Matthews, et al. (2008). "Wound healing dressings and drug delivery systems: A review." Journal of Pharmaceutical Sciences 97: 2892-2923.
Buchko, C. J., L. C. Chen, et al. (1999). "Processing and microstructural characterization of porous biocompatible protein polymer thin films." Polymer 40: 7397-7407.
Cai, Z., A. Kastell, et al. (2012). "Polysaccharide elicitors enhance anthocyanin and phenolic acid accumulation in cell suspension cultures of Vitis vinifera." Plant Cell, Tissue and Organ Culture 108: 401-409.
Charernsriwilaiwat, N., P. Opanasopit, et al. (2010). "Preparation and characterization of chitosan-hydroxybenzotriazole/polyvinyl alcohol blend nanofibers by the electrospinning technique." Carbohydrate Polymers 81: 675-680.
Chew, S. Y., T. C. Hufnagel, et al. (2006). "Mechanical properties of single electrospun drug-encapsulated nanofibres." Nanotechnology 17: 3880-3891.
Coimbra, P., P. Ferreira, et al. (2011). "Preparation and chemical and biological characterization of a pectin/chitosan polyelectrolyte complex scaffold for possible bone tissue engineering applications." International Journal of Biological Macromolecules 48: 112-118.
Deitzel, J. M., J. Kleinmeyer, et al. ( 2001). "The effect of processing variables on the morphology of electrospun nanofibers and textiles." Polymer 42: 261-272.
Fong, H., I. Chun, et al. (1999). "Beaded nanofibers formed during electrospinning." Polymer 40: 4585-4592.
Formhals, A. (1934). "Process and apparatus for preparing artificial threads." U.S. Patent: No. 1975504.
Frenot, A. and I. S. Chronakis (2003). "Polymer nanofibers assembled by electrospinning." Current Opinion in Colloid and Interface Science 8: 64-75.
G., T. (1969). "Electrically Driven Jets." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 313: 453-475.
Geng, X., O.-H. Kwon, et al. (2005). "Electrospinning of chitosan dissolved in concentrated acetic acid solution." Biomaterials 26: 5427-5432.
Ghaffari, A., K. Navaee, et al. (2007). "Preparation and characterization of free mixed-film of pectin/chitosan/EudragitR RS intended for sigmoidal drug delivery." European Journal of Pharmaceutics and Biopharmaceutics 67: 175-186.
Graessley, W. W. (1980). "Polymer chain dimensions and the dependence of viscoelastic properties on concentration, molecular weight and solvent power." Polymer 21: 258-262.
Gupta, K. C. and F. H. Jabrail (2006). "Glutaraldehyde and glyoxal cross-linked chitosan microspheres for controlled delivery of centchroman." Carbohydrate Research 341: 744-756.
Gupta, K. C. and F. H. Jabrail (2007). "Glutaraldehyde cross-linked chitosan microspheres for controlled release of centchroman." Carbohydrate Research 342: 2244-2252.
Haghi, A. K. and M. Akbari ( 2007). "Trends in electrospinning of natural nanofibers." Physica Status Solidi (A) Applications and Materials Science 2007; 204: 1830-1834 204: 1830-1834.
Hang, A. T., B. Tae, et al. (2010). "Non-woven mats of poly(vinyl alcohol)/chitosan blends containing silver nanoparticles: Fabrication and characterization." Carbohydrate Polymers 82: 472-479.
Howling, G. I., P. W. Dettmar, et al. (2001). "The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro." Biomaterials 22: 2959-2966.
Hsieh, C. Y., S. P. Tsai, et al. (2007). "Analysis of freeze-gelation and cross-linking processes for preparing porous chitosan scaffolds." Carbohydrate Polymers 67: 124-132.
Huang, H. L., Z. H. Yao, et al. (2001). "Preparation and characterization of chitosan/poly(vinyl alcohol) blend fibers." Journal of Applied Polymer Science 80: 2558-2565.
Islam, M. S. and M. R. Karim (2010). "Fabrication and characterization of poly(vinyl alcohol)/alginate blend nanofibers by electrospinning method." Colloids and Surfaces A: Physicochemical and Engineering Aspects 366: 135-140.
J., L., R. D., et al. (2007). "Electrospinning for tissue engineering scaffolds." Materials Science and Engineering C 27: 504–509.
J.J., S., G. J., et al. (2006). "Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix." Biomaterials 27: 735-744.
Jayakumar, R., M. Prabaharan, et al. (2010). "Novel chitin and chitosan nanofibers in biomedical applications." Biotechnology Advances 28: 142-150.
Jayakumar, R., M. Prabaharan, et al. (2010). "Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications." Progress in Materials Science 55: 675-709.
Jia, Y. T., J. Gong, et al. (2007). "Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method." Carbohydrate Polymers 67: 403-409.
Jung, K. H., M. W. Huh, et al. (2007). "Preparation and antibacterial activity of PET/chitosan nanofibrous mats using an electrospinning technique." Journal of Applied Polymer Science 105: 2816-2823.
Khajavi, R. and R. Damerchely (2007). "Effect of polyvinyl alcohol concentration in spinning dope on diameter, beads and HHS of produced nanofibers." Pakistan Journal of Biological Sciences 10: 314-317.
Ki, C. S., D. H. Baek, et al. (2005). "Characterization of gelatin nanofiber prepared from gelatin-formic acid solution." Polymer 46: 5094-5102.
Kidoaki, S., I. K. Kwon, et al. (2005). "Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques." Biomaterials 26: 37-46.
Kim, B., H. Park, et al. (2005). "Poly(acrylic acid) nanofibers by electrospinning." Materials Letters 59: 829-832.
Kim, I. Y., S. J. Seo, et al. (2008). "Chitosan and its derivatives for tissue engineering applications." Biotechnology Advances 26: 1-21.
Kim, K.-H., L. Jeong, et al. (2005). "Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration." Journal of Biotechnology 120: 327-339.
Kim, S. E., J. H. Park, et al. (2003). "Porous chitosan scaffold containing microspheres loaded with transforming growth factor-β1: Implications for cartilage tissue engineering." Journal of Controlled Release 91: 365-374.
Ko, Y.-G., N. Kawazoe, et al. (2010). "Preparation of chitosan scaffolds with a hierarchical porous structure." Journal of Biomedical Materials Research Part B: Applied Biomaterials 93: 341-350.
Koski, A., K. Yim, et al. (2004). "Effect of molecular weight on fibrous PVA produced by electrospinning." Materials Letters 58: 493-497.
Kriegel, C., K. M. Kit, et al. (2009). "Nanofibers as carrier systems for antimicrobial microemulsions. part I: Fabrication and characterization." Langmuir 25: 1154-1161.
Lai, J. Y., Y. T. Li, et al. (2010). "In vitro response of retinal pigment epithelial cells exposed to chitosan materials prepared with different cross-linkers." International Journal of Molecular Sciences 11: 5256-5272.
Lee, J. S., K. H. Choi, et al. (2004). "Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning." Journal of Applied Polymer Science 93: 1638-1646.
Lee, K. Y., W. S. Ha, et al. (1995). "Blood compatibility and biodegradability of partially N-acylated chitosan derivatives." Biomaterials 16: 1211-1216.
Lee, S. H., E. H. Choi, et al. (1998). "Iontophoresis itself on hairless mouse skin induces the loss of the epidermal calcium gradient without skin barrier impairment." Journal of Investigative Dermatology 111: 39-43.
Liao, H., R. Qi, et al. (2011). "Improved cellular response on multiwalled carbon nanotube-incorporated electrospun polyvinyl alcohol/chitosan nanofibrous scaffolds." Colloids and Surfaces B: Biointerfaces 84: 528-535.
Lin, S. Y., K. S. Chen, et al. (2001). "Design and evaluation of drug-loaded wound dressing having thermoresponsive, adhesive, absorptive and easy peeling properties." Biomaterials 22: 2999-3004.
Ma, L., C. Gao, et al. (2003). "Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering." Biomaterials 24: 4833-4841.
Madihally, S. V. and H. W. T. Matthew (1999). "Porous chitosan scaffolds for tissue engineering." Biomaterials 20: 1133-1142.
Muzzarelli, R. A. A. (2009). "Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone." Carbohydrate Polymers 76: 162-182.
Reneker, D. H. and I. Chun (1996). "Nanometre diameter fibres of polymer, produced by electrospinning." Nanotechnology 7: 216-223.
Reneker, D. H. and A. L. Yarin (2008). "Electrospinning jets and polymer nanofibers." Polymer 49: 2387-2425.
Ridley, B. L., M. A. O'Neill, et al. (2001). "Pectins: Structure, biosynthesis, and oligogalacturonide-related signaling." Phytochemistry 57: 929-967.
Rinaudo, M. (2006). "Chitin and chitosan: Properties and applications." Progress in Polymer Science 31: 603-632.
Ristolainen, N., P. Heikkila, Harlin, A., et al. (2006). "Poly(vinyl alcohol) and polyamide-66 nanocomposites prepared by electrospinning." Macromolecular Materials and Engineering 291: 114-122.
Schiffman, J. D. and C. L. Schauer (2007). "Cross-linking chitosan nanofibers." Biomacromolecules 8: 594-601.
Son, W. K., J. H. Youk, et al. (2004). "The effects of solutionproperties and polyelectrolyte on electrospinning of ultrafinepoly(ethyleneoxide) fibers." Polymer 45: 2959–2966
Sukigara, S., M. Gandhi, et al. (2003). "Regeneration of Bombyx mori silk by electrospinning - Part 1: Processing parameters and geometric properties." Polymer 44: 5721-5727.
Tang, Z., J. Wei, et al. (2009). "UV-cured poly(vinyl alcohol) ultrafiltration nanofibrous membrane based on electrospun nanofiber scaffolds." Journal of Membrane Science 328: 1-5.
Thakur, B. R., R. K. Singh, et al. (1997). "Chemistry and uses of pectin - A review." Critical Reviews in Food Science and Nutrition 37: 47-73.
Verma, P. and K. Pathak (2012). "Nanosized ethanolic vesicles loaded with econazole nitrate for the treatment of deep fungal infections through topical gel formulation" Nanomedicine: Nanotechnology, Biology, and Medicine 8: 489-496.
Wang, T. W., J. S. Sun, et al. (2006). "The effect of gelatin-chondroitin sulfate-hyaluronic acid skin substitute on wound healing in SCID mice." Biomaterials 27: 5689-5697.
Wang, X., X. Chen, et al. (2005). "High flux filtration medium based on nanofibrous substrate with hydrophilic nanocomposite coating." Environmental Science and Technology 39: 7684-7691.
Wannatong, L., A. Sirivat, et al. (2004). "Effects of solvents on electrospun polymeric fibers: Preliminary study on polystyrene." Polymer International 53: 1851-1859.
Yang, D., Y. Jin, et al. (2008). "Fabrication and characterization of chitosan/PVA with hydroxyapatite biocomposite nanoscaffolds." Journal of Applied Polymer Science 110: 3328-3335.
Yarin, A. L., S. Koombhongse, et al. ( 2001). "Bending instability in electrospinning of nanofibers." Journal of Applied Physics 89: 3018-3026.
Yilmaz, E., N. Erdenizci, et al. (2003). "Miscibility of Chitosan and Poly(Ethylene Oxide) in Dilute Solution." International Journal of Polymer Analysis and Characterization 8(5): 327-338.
Yoon, K., K. Kim, et al. (2006). "High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating." Polymer 47: 2434-2441.
Zhang, C., X. Yuan, et al. (2005). "Study on morphology of electrospun poly(vinyl alcohol) mats." European Polymer Journal 41: 423-432.
Zhou, Y., D. Yang, et al. (2008). "Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration." Biomacromolecules 9: 349-354.
Zong, X., K. Kim, et al. (2002). "Structure and process relationship of electrospun bioabsorbable nanofiber membranes." Polymer 43: 4403-4412.
湯有春,創傷敷材:利用電紡技術置備的玻尿酸/幾丁聚醣奈米先微薄膜,碩士學位論文,長庚大學生化與生醫工程研究所,2007。
葉志宗,以幾丁聚醣為基質製備應用於藥物釋放之組織工程多孔性支架,碩士學位論文,國立台北科技大學化學工程研究所,2009。
賴亦廷,聚以二醇交聯幾丁聚醣作為創傷敷材支應用研究,碩士學位論文,國立台灣大學工學院化學工程研究所,2011。
論文全文使用權限:同意授權於2017-08-09起公開