現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:多邊形金奈米粒子之多色現象研究 [以論文名稱查詢館藏系統]
論文英文名稱:Multichroic Behaviors of Polygonal Gold Nanoparticles [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:化學工程研究所
畢業學年度:101
出版年度:102
中文姓名:張家豪
英文姓名:Chia-Hao Chang
研究生學號:100738046
學位類別:碩士
語文別:中文
口試日期:2013-07-26
論文頁數:70
指導教授中文名:侯劭毅
口試委員中文名:黃志宏;吳宛儒;黃光策
中文關鍵詞:雙色現象金奈米粒子
英文關鍵詞:Dichroic colorGold nanoparticles
論文中文摘要:在金奈米粒子的顏色研究大多數為針對其粒徑大小的顏色探討,而其中一個例子就是Lycurgus cup,其在透射光為紅色、反射光為綠色的雙色(Dichroic color)現象;本研究利用金奈米粒子接上羧基(Carboxyl group )而後加入N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) 及N-Hydroxysuccinimide (NHS),增強羧基與羧基的鍵結,使其形成多核心,而後將HAuCl4還原於此多核心上。所得之奈米金溶液發現有多色(Multichroic color)現象的產生。在透射光為藍紫色、反射光為橘色,而在白色背景下(反射光加上透射光)會有粉紅色的現象。利用單角度動/靜態光散射儀、穿透式電子顯微鏡及掃描式電子顯微鏡對其粒徑、形狀的測定,發現為多邊形的形狀,在本論文稱為多邊形金奈米粒子。
在一般球形或橢圓形金奈米粒子加入氯化鈉後會有聚集的現象發生,金奈米粒子溶液的顏色從酒紅色變為紫色;而本研究中製備的金奈米粒子若在長晶的步驟時加入檸檬酸鈉,會使溶液顏色從橘色變為藍色,且多色現象會消失。也實驗二氧化矽奈米粒子對多邊形金奈米粒子的影響,發現二氧化矽奈米粒子的濃度對顏色會有明顯的影響,從橘色變為粉色。
論文英文摘要:Most investigations on the color of gold nanoparticle discuss the variations in color due to the size differences of a particle. One example is the Lycurgus cup which is red in transmitted light and turns green under reflected light. This phenomenon is called dichroic color. In this study, we bound gold nanoparticles with carboxyl group and add N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-Hydroxysuccinimide (NHS). To enhance the binding of the carboxyl group with another carboxyl group to create a multi-core. We then reduce the HAuCl4 on this multi-core. The final product obtained by this process exhibits the phenomenon of multichroic color. It is violet-blue in transmitted light, appears orange in reflected light, and tarns pink when placed against a white background (combining reflected light with transmitted light). We used single angle of dynamic static light scattering, transmission electron microscopy and scanning electron microscopy to measure the size and the shape of the particle, and find the shape is polygon, so we call it’s ‘Polygonal Gold Nanoparticles’ .
In general, when sodium chloride is added to spherical or oval gold nanoparticles, there will be aggregation. The color of the gold nanoparticle solution will change from burgundy red to purple. However, in this study, when we added sodium citrate to polygonal gold nanoparticles, during the crystals growing phase, they will cause the color of the solution to change from orange to blue and the multichroic color phenomenon will then disappear. We also examined the effect of silica nanoparticles on the polygonal gold nanoparticles and found that the concentration of the silica nanoparticles has a significant effect on the color of the solution, which changes from orange to pink.
論文目次:摘要 I
ABSTRACT II
誌謝 IV
目錄 V
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1前言 1
1.2 研究目的: 2
第二章 研究背景與實驗原理 3
2.1金屬奈米粒子製程介紹 3
2.1.1雷射消熔法 3
2.1.2.金屬氣相合成法 4
2.1.2.1 氣液固生長法 4
2.1.3化學還原法 4
2.1.3.1 自由空間中的化學還原法 5
2.1.3.1.1鹽類還原法 5
2.1.3.1.2 電化學法 5
2.1.3.1.3 聲化學製備法 6
2.1.3.1.4 種晶促進長成法 6
2.1.3.2 侷限空間中的化學還原法 7
2.1.3.2.1反微胞(微乳液) 7
2.1.3.2.2 Dendrimer 7
2.2金奈米粒子 8
2.2.1 金奈米粒子的特性 8
2.2.1.1 體積效應: 8
2.2.1.2 量子侷限效應: 9
2.2.1.3 表面積效應: 9
2.2.2 金奈米粒子的光學特性 9
2.2.2.1 尺寸效應: 10
2.2.2.2 形狀效應: 11
2.4 矽奈米粒子 15
2.4.1 二氧化矽 16
2.5光學的反射與透射現象 17
2.5.1 反射現象 17
2.5.2 透射現象 17
2.6 儀器原理 18
2.6.1 單角度動靜態光散射儀(single angle of dynamic static light scattering) 18
2.6.2 光度計 18
2.6.4 穿透式電子顯微鏡 19
2.6.5 掃描式電子顯微鏡 19
第三章 實驗方法與步驟 21
3.1 實驗架構 21
3.2 實驗方法 23
3.2.1 金核製備方法 23
3.2.2 多邊形金奈米粒子製備方法 24
3.2.2.1活化羧基 24
3.2.3.2長晶 24
3.2.4 TEM樣品製備方法 25
3.2.5 SEM樣品製備方法 25
3.2.6 二氧化矽對多邊形金奈米粒子的影響實驗方法 26
3.2.6.1二氧化矽奈米粒子製備方法 26
3.2.6.2 影響實驗方法 27
3.4實驗藥品與器材 28
3.4.1 實驗藥品 28
3.4.2 實驗器材 29
第四章 結果與討論 30
4.1 多邊形金奈米粒子實驗結果 30
4.2 多邊形金奈米粒子加入檸檬酸鈉的實驗結果 43
4.3 二氧化矽奈米粒子對多邊形金奈米粒子的顏色影響實驗結果 48
第五章 結論 53
參考文獻 54
附錄 59
附錄 一:多邊形金奈米粒子樣品1 TEM圖 59
附錄 二:多邊形金奈米粒子樣品2 TEM圖 60
附錄 三:橢圓形金奈米粒子TEM圖 62
附錄 四:多邊形金奈米粒子SEM圖 64
附錄 五:多邊形金奈米粒子加入檸檬酸鈉TEM圖 65
附錄 六:對比色圖及各色光波長表 67
附錄 七:多邊形金奈米粒子粒徑圖 68
附錄 八:LED燈泡藍色光與橘色光重疊圖 69
附錄 九:折射、繞射定義 70
論文參考文獻:Arzenšek, Dejan. (2010). Dynamic light scattering and application to proteins in solutions. Faculty of Matbematics and Physics, 19.
BOGUSH, G.H., TRACY, M.A., & IV, C.F. ZUKOSKI. (1988). Preparation Of Monodisperse Silica Particles : Control Of Size And Mass Fraction. Journal of Non-Crystalline Solids, 104, 11.
Cademartiri, Rebecca, Brook, Michael A., Pelton, Robert, & Brennan, John D. (2009). Macroporous silica using a “sticky” Stober process. Journal of Materials Chemistry, 19(11), 1583. doi: 10.1039/b815447c
Chen, Chia-Chun, & Yeh, Chun-Chia. (2000). Large-Scale Catalytic Synthesis of Crystalline Gallium Nitride Nanowires. Adv. Mater., 12, 3.
Egerton, Ray F. (2005). Physical principles of electron microscopy Edmonton. Alberta. Canada: Springer.
Feynman, Richard P. (1985). QED, The strange Theory of Light and Matter. Newjersey: Princeton University.
Guo, Lin, Huang, Qunjian, Li, Xiao-yuan, & Yang, Shihe. (2001). Iron nanoparticles: Synthesis and applications in surface enhanced Raman scattering and electrocatalysis. Physical Chemistry Chemical Physics, 3(9), 1661-1665. doi: 10.1039/b009951l
Hirsch, L. R., Gobin, A. M., Lowery, A. R., Tam, F., Drezek, R. A., Halas, N. J., & West, J. L. (2006). Metal nanoshells. Ann Biomed Eng, 34(1), 15-22. doi: 10.1007/s10439-005-9001-8
Hu, JIANGTAO, Odom, TERI WANG, & Lieber, CHARLES M. (1999). Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes. Acc. Chem. Res., 32, 11.
Jana, N. R. (2005). Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles. Small, 1(8-9), 875-882. doi: 10.1002/smll.200500014
Jana, N. R., Gearheart, L., & Murphy, C. J. (2001). Evidence for Seed-Mediated Nucleation in the Chemical Reduction of Gold Salts to Gold Nanoparticles. Chem. Mater., 13, 10.
KAMBARA, Kumiko, SHIMURA, Naoki, & OGAWA, Makoto. (2007). Larger Scale Syntheses of Surfactant-Templateed Nanoporous Silica Spherical Particles by Stober Method. journal of ceramic society of japen, 115, 4.
Kelly, K. Lance, Coronado, Eduardo, Zhao, Lin Lin, & Schatz, George C. (2003). The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem., 107, 10.
L.Freestone, N.Meeks, M.Sax, & C.Higgitt. (2007). The Lycurgus Cup - A Roman Nanotechnology. Gold Bulletin, 40, 8.
Li, Z. F., & Ruckenstein, E. (2004). Water-Soluble Poly(acrylic acid) Grafted Luminescent Silicon Nanoparticles and Their Use as Fluorescent Biological Staining Labels. Nano Lett, 4, 5.
Link, S., Mohamed, M. B., & El-Sayed, M. A. (1999). Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant. J. Phys. Chem., 103, 5.
Mafune, Fumitaka, Kohno, Jun-ya, Takeda, Yoshihiro, & Kondow, Tamotsu. (2000a). Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution. J. Phys. Chem., 104, 7.
Mafune, Fumitaka, Kohno, Jun-ya, Takeda, Yoshihiro, & Kondow, Tamotsu. (2000b). Structure and Stability of Silver Nanoparticles in Aqueous Solution Produced by Laser Ablation. J. Phys. Chem., 104, 5.
Mafune, Fumitaka, Kohno, Jun-ya, Takeda, Yoshihiro, & Kondow, Tamotsu. (2001). Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution. J. Phys. Chem., 105, 5114.
Mizukoshi, Y.; Okitsu, K.; Maeda, Y.; Yamamoto, T. A.; Oshima, R.; Nagata, Y. Sonochemical. (1997). Preparation of Bimetallic Nanoparticles of Gold/Palladium in Aqueous Solution. J. Phys. Chem., 101, 5.
Mohamed, Mona B., Ismail, Kamal Z., Link, Stephan, & El-Sayed, Mostafa A. (1998). Thermal Reshaping of Gold Nanorods in Micelles. J. Phys. Chem., 102, 5.
Okitsu, K.; Bandow, H.; Maeda, Y. Sonochemical. (1996). Preparation of Ultrafine Palladium Particles. Chem. Mater, 8, 3.
Park, Sang Jae, Kim, Seungsoo, Lee, Suyoun, Khim, Zheong G., Char, Kookrin, & Hyeon, Taeghwan. (2000). Synthesis and Magnetic Studies of Uniform Iron Nanorods and Nanospheres. J. Am. Chem., 122, 2.
Pileni, M. P. (1997). Nanosized Particles Made in Colloidal Assemblies. Langmuir, 13, 11.
Prabakar, Sujay, Shiohara, Amane, Hanada, Sanshiro, Fujioka, Kouki, Yamamoto, Kenji, & Tilley, Richard D. (2010). Size Controlled Synthesis of Germanium Nanocrystals by Hydride Reducing Agents and Their Biological Applications. Chemistry of Materials, 22(2), 482-486. doi: 10.1021/cm9030599
Puntes, Victor F., Krishnan, Kannan M., & Alivisatos, A. Paul. (2001). Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt. Science, 291, 3. doi: 10.1126/science.1058495
Reetz, Manfred T., & Helbig, Wolfgang. (1994). Size-Selective Synthesis of Nanostructured Transition Metal Clusters. J. Am. Chem., 116, 2.
Som, Tirtha, & Karmakar, Basudeb. (2010). Surface Plasmon Resonance and Enhanced Fluorescence Application of Single-step Synthesized Elliptical Nano Gold-embedded Antimony Glass Dichroic Nanocomposites. Plasmonics, 5(2), 149-159. doi: 10.1007/s11468-010-9129-8
Stewart, Matthew E., Anderton, Christopher R., Thompson, Lucas B., Maria, Joana, Gray, Stephen K., Rogers, John A., & Nuzzo, Ralph G. (2008). Nanostructured Plasmonic Sensors. Chem. Rev., 108, 28.
Stober, Werner, & Fink, Arthur. (1968). Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 26, 8.
Sun, Y., & Xia, Y. (2002). Shape-controlled synthesis of gold and silver nanoparticles. Science, 298(5601), 2176-2179. doi: 10.1126/science.1077229
Westcott, Sarah L., Oldenburg, Steven J., Lee, T. Randall, & Halas, Naomi J. (1998). Formation-and-adsorption-of-clusters-of-gold-nanoparticles-onto-functionalized-silica-nanoparticle-surfaces. langmuir, 14, 6.
Ying, Shang-Ping, Chou, P. T., & Fu, Han-Kuei. (2013). Influence of the temperature dependent spectral power distribution of light-emitting Diodes on the illuminance responsivity of a photometer. Optics and Lasers in Engineering, 51(10), 1179-1184. doi: 10.1016/j.optlaseng.2013.04.002
Zeng, Shouheng Sun* and Hao. (2002). Size-Controlled Synthesis of Magnetite Nanoparticles. J. AM. CHEM. SOC., 124, 2.
Zhang, Xiaoming, Neiner, Doinita, Wang, Shizhong, Louie, Angelique Y., & Kauzlarich, Susan M. (2007). A new solution route to hydrogen-terminated silicon nanoparticles: synthesis, functionalization and water stability. Nanotechnology, 18(9), 095601. doi: 10.1088/0957-4484/18/9/095601
葉晨聖,黃志嘉,「金奈米的制備與生物醫學上的應用」,生醫奈米技術,2007,第3-19頁。
論文全文使用權限:不同意授權