現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:以電紡與冷凍乾燥技術製備雙層膠原蛋白軟骨支架並比較非順向與順向之奈米纖維 [以論文名稱查詢館藏系統]
論文英文名稱:Fabrication of bi-layer collagen cartilage scaffolds by electrospinning and freeze-drying and comparison of the difference between the random and the aligned nano-fibers [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:化學工程研究所
畢業學年度:101
出版年度:102
中文姓名:蔡文啟
英文姓名:Wen-Chi Tsai
研究生學號:100738049
學位類別:碩士
語文別:中文
口試日期:2013-07-25
論文頁數:105
指導教授中文名:林忻怡
口試委員中文名:謝學真;鍾仁傑
中文關鍵詞:膠原蛋白靜電紡絲冷凍乾燥軟骨細胞
英文關鍵詞:collagenelectrospinningfreeze-dryingchondrocyte
論文中文摘要:  軟骨組織工程是一種應用於受損軟骨組織之組織修復及再生的新技術。近年來利用組織工程在體外培養軟骨組織已成為修補受損關節軟骨的途徑之一,基本概念是將細胞取出,並於合適的基材及環境下進行體外培養,再植入體內,透過此方式,獲得近似於天然的軟骨組織,修補軟骨受損部位。
  軟骨是由僅佔總體積百分之五的軟骨細胞和所分泌的胞外基質所組成,大約分成四層,每層的細胞型態、分佈及密度皆略有差異。其細胞外基質主要成份為第二型膠原蛋白和蛋白醣。軟骨組織的自我修復以及再生能力極差,一旦產生創傷,軟骨細胞不易有效地至受傷部位進行修復。故利用組織工程技術有效地修復受損軟骨組織為本實驗所期待的目標。
  本實驗以膠原蛋白為基材,利用冷凍乾燥及靜電紡絲技術製作仿軟骨結構之多孔性支架,再經戊二醛進行交聯處理,提高支架機械性質。並進行物理性質測試及體外細胞培養來探討本實驗支架對於軟骨組織修復之影響。實驗結果顯示,本實驗支架具有穩定的結構及機械強度,於體外細胞培養結果得知,本實驗支架能有效使細胞貼附並促進細胞增生,具良好的生物相容性。
論文英文摘要:  Tissue engineering of cartilage is emerging as a technique for the regeneration or repair of damaged cartilage tissue. Tissue engineering has been a feasible way to regenerate cartilage in vitro. The fundamental concept of tissue engineering includes cell isolating, cell culturing in vitro, and implanting in vivo. To obtain nearly native articular cartilage tissue and repair the damaged section are currently the main purposes of cartilage tissue engineering.
  Articular cartilage tissue is composed of chondrocytes and extracellular matrix, where the chondrocytes only make up about 5% of the total volume of cartilage. Articular cartilage is comprised of four different layers that can be distinguished from one another by the morphology, distribution and density of chondrocytes. The matrix is composed of collagens, especially type II collagen, and proteoglycan. The proliferation and self-repair of articular cartilage are both poor, because chondrocytes can not migrate to the damaged tissue to repair effectively when injured. So, repair the damaged cartilage tissue effectively by the techniques of tissue engineering is the purpose of this study.
  In this study, we fabricate the porous scaffolds base on collagen for imitating native cartilage tissue by freeze-drying and electrospinning, and cross-link with glutaraldehyde to raise the mechanical properties. And explore the influence of repair of cartilage tissue by physical properties tests and in vitro cell culturing tests. The results indicate that the scaffolds have stable structure and mechanical strength, and in vitro cell culturing tests showed that the scaffolds are able to effectively promote cells attachment and proliferation, and with good biocompatibility.
論文目次:摘要 I
ABSTRACT II
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 組織工程 3
2.1.1 支架 5
2.1.2 細胞 6
2.1.3訊號 6
2.2軟骨之介紹及種類 6
2.3 軟骨細胞 10
2.4 關節軟骨疾病 11
2.5 靜電紡絲 12
2.5.1 應用於靜電紡絲之高分子聚合物 14
2.5.2 影響靜電紡絲的參數 17
2.6 冷凍乾燥技術 23
2.7 膠原蛋白 24
2.7.1 膠原蛋白之簡介 24
2.7.2 膠原蛋白之應用 25
2.7.3 靜電紡膠原蛋白 26
2.8 聚乙烯醇 28
2.9 交聯處理 29
第三章 實驗材料與方法 30
3.1 實驗材料 30
3.1.1 電紡溶液配製及交聯處理所需藥品 30
3.1.2 冷凍乾燥溶液配製及交聯處理所需藥品 31
3.1.3 萃取豬軟骨細胞及培養軟骨細胞所需藥品 32
3.1.4 實驗測量所需藥品 33
3.1.5 儀器設備與耗材 35
3.2 實驗方法 38
3.2.1 實驗架構 38
3.2.2 溶液配製 38
3.2.3 支架製備與參數設定 39
3.2.4 交聯處理 43
3.3 物理性質測試 43
3.3.1 掃描式電子顯微鏡 43
3.3.2 靜電紡絲直徑分析 44
3.3.3 吸水率 44
3.3.4 降解測試 45
3.3.5 拉伸測試 45
3.4 豬軟骨細胞活性測試 48
3.4.1 分離初代豬軟骨細胞 48
3.4.2 細胞計數 51
3.4.3初代豬軟骨細胞培養 52
3.4.4 細胞繼代 53
3.4.5 細胞接種之樣本前處理 53
3.4.6 細胞接種 54
3.4.7 DNA含量測定 55
3.4.8 葡萄胺聚醣含量測定 56
3.4.9 第二型膠原蛋白含量測定 56
3.4.10 掃描式電子顯微鏡(SEM)觀察細胞型態 58
3.4.11 組織切片及H&E染色 58
3.4.12 細胞拉伸 59
3.4.13 統計分析 59
第四章 實驗結果與討論 60
4.1 雙層多孔性支架外觀 60
4.2 軟骨支架之物理性質測試 64
4.2.1 掃描式電子顯微鏡 64
4.2.2 靜電紡奈米纖維直徑分析 67
4.2.3 軟骨支架之吸水率測試 69
4.2.4 軟骨支架之降解測試 70
4.2.5 軟骨支架之拉伸測試 74
4.3 軟骨支架之體外軟骨細胞活性測試 78
4.3.1 初代豬軟骨細胞培養測試 78
4.3.2 DNA含量 80
4.3.3 葡萄胺聚醣含量 81
4.3.4 第二型膠原蛋白含量 82
4.3.5 掃描式電子顯微鏡觀察軟骨細胞生長型態 83
4.3.6 軟骨細胞生長於雙層多孔支架之H&E切片染色 88
4.3.7 軟骨細胞生長於雙層多孔支架之細胞拉伸測試 91
第五章 結論 93
參考文獻 95
附錄 103
論文參考文獻:1. S.F. Badylak, Regenerative medicine and developmental biology: the role of the extracellular matrix. Anat Rec B New Anat, 2005. 287(1): p. 36-41.
2. R.M. Nerem and A. Sambanis, Tissue Engineering: From Biology to Biological Substitutes. Tissue engineering, 1995. 1: p. 3-13.
3. 宋信文、梁晃千,建立人類的身體工房-組織工程,科學發展,2003,第6-11頁。
4. S. Nehrer, Matrix collagen type and pore size influence behaviour of seeded canine chondrocytes. Biomaterials, 1997. 18: p. 769-776.
5. J.S. Temenoff and A.G. Mikos, Review: tissue engineering for regeneration of articular cartilage. Biomaterials, 2000. 21: p. 431-440.
6. J.S. Pieper, T. Hafmans, J.H. Veerkamp, Development of tailor-made collagen}glycosaminoglycan matrices: EDC/NHS crosslinking, and ultrastructural aspects. Biomaterials, 2000. 21: p. 581-593.
7. S.N. Park, J.H. Park, H.O. Kim, Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide cross-linking. Biomaterials, 2002. 23: p. 1205-1212.
8. C. Zhang, X. Yuan, L. Wu, Study on morphology of electrospun poly(vinyl alcohol) mats. European Polymer Journal, 2005. 41(3): p. 423-432.
9. Z. Ma, C. Gao, Y. Gong, Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor. Biomaterials, 2005. 26(11): p. 1253-9.
10. J. Zhang, Y. Yuan, K. Wu, Surface modification of segmented poly(ether urethane) by grafting sulfo ammonium zwitterionic monomer to improve hemocompatibilities. Colloids and Surfaces B: Biointerfaces, 2003. 28: p. 1-9.
11. A.E. Gross, A fresh osteochondral allograft alternative. The Journal of Arthroplasty, 2002. 17(4): p. 50-53.
12. R.J. Lories and F.P. Luyten, Overview of Joint and Cartilage Biology. 2013: p. 35-51.
13. J.K. Suh, Basic science of articular cartilage injury and repair. Operative Techniques in Sports Medicine, 1995. 3: p. 78-86.
14. A. Atala and R.P. Lanza, Methods of Tissue Engineering. USA Gulf Professional Publishing, 2002: p. 318.
15. A.P. Newman, Articular Cartilage Repair. American Journal of Sports Medicine, 1998. 26: p. 309-324.
16. J.A. Buckwalter, Activity vs. rest in the treatment of bone, soft tissue and joint injuries. The Iowa Orthopaedic Journal, 1994. 15: p. 29-42.
17. J. Henry, The response of articular cartilage to mechanical injury. The Journal of Bone and Joint Surgery, 1982. 64-A: p. 460-466.
18. G. Liu, et al., Optimal combination of soluble factors for tissue engineering of permanent cartilage from cultured human chondrocytes. J Biol Chem, 2007. 282(28): p. 20407-15.
19. K.J. Doege, et al., Complete Coding Sequence and Deduced Primary Structuroef the Human Cartilage Large Aggregating Proteoglycan, Aggrecan. The journal of biologic chemistry, 1991. 266: p. 894-902.
20. D. Bader and D. Lee, Structure-Properties of soft tissues articular cartilage. 1998. 75-103.
21. J. Lannutti, et al., Electrospinning for tissue engineering scaffolds. Materials Science and Engineering: C, 2007. 27(3): p. 504-509.
22. M.T. Hunley and T.E. Long, Electrospinning functional nanoscale fibers: a perspective for the future. Polymer International, 2008. 57(3): p. 385-389.
23. D.H. Reneker and A.L. Yarin, Electrospinning jets and polymer nanofibers. Polymer, 2008. 49(10): p. 2387-2425.
24. D.H. Reneker, et al., Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics, 2000. 87(9): p. 4531.
25. Z.M. Huang, et al., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 2003. 63(15): p. 2223-2253.
26. S.A. Theron, et al., Multiple jets in electrospinning: experiment and modeling. Polymer, 2005. 46(9): p. 2889-2899.
27. Z. Ma, et al., Potential of Nanofiber Matrix as Tissue-Engineering Scaffolds. Tissue engineering, 2005. 11: p. 101-109.
28. Y.K. Luu, et al., Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA–PEG block copolymers. Journal of Controlled Release, 2003. 89(2): p. 341-353.
29. T. Subbiah, et al., Electrospinning of nanofibers. Journal of Applied Polymer Science, 2005. 96(2): p. 557-569.
30. S. Ramakrishna, et al., Electrospun nanofibers: solving global issues. Materials Today, 2006. 9(3): p. 40-50.
31. A. Welle, et al., Electrospun aliphatic polycarbonates as tailored tissue scaffold materials. Biomaterials, 2007. 28(13): p. 2211-9.
32. N. Charernsriwilaiwat, et al., Preparation and characterization of chitosan-hydroxybenzotriazole/polyvinyl alcohol blend nanofibers by the electrospinning technique. Carbohydrate Polymers, 2010. 81(3): p. 675-680.
33. E.J. Chong, et al., Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater, 2007. 3(3): p. 321-30.
34. J.A. Matthews, et al., Electrospinning of Collagen Nanofibers. Biomacromolecules, 2002. 3: p. 232-238.
35. F. Yang, et al., Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials, 2005. 26(15): p. 2603-10.
36. J.J. Stankus, J. Guan and W.R. Wagner, Fabrication of biodegradable elastomeric scaffolds with sub-micron morphologies. J Biomed Mater Res A, 2004. 70(4): p. 603-14.
37. I.C. Um, et al., Electro-Spinning and Electro-Blowing of Hyaluronic Acid. Biomacromolecules, 2004. 5: p. 1428-1436.
38. Z. Chen, X. Mo and F. Qing, Electrospinning of collagen–chitosan complex. Materials Letters, 2007. 61(16): p. 3490-3494.
39. S.Y. Chew, Y. Wen and Y. Dzenis, The Role of Electrospinning in the Emerging Field of Nanomedicine. Curr Pharm Des., 2006. 12: p. 4751-4770.
40. S. Kidoaki, I.K. Kwon and T. Matsuda, Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials, 2005. 26(1): p. 37-46.
41. J.J. Stankus, et al., Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix. Biomaterials, 2006. 27(5): p. 735-44.
42. N. Bhardwaj and S.C. Kundu, Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv, 2010. 28(3): p. 325-47.
43. K. Ohgo, et al., Preparation of non-woven nanofibers of Bombyx mori silk, Samia cynthia ricini silk and recombinant hybrid silk with electrospinning method. Polymer, 2003. 44: p. 841-846.
44. G.E. Wnek, et al., Electrospinning of Nanofiber Fibrinogen Structures. Nano letters, 2003. 2: p. 213-216.
45. X. Fang and D.H. Reneker, DNA fibers by electrospinning. Journal of Macromolecular Science, Part B, 1997. 36(2): p. 169-173.
46. W.K. Son, J.H. Youk and W.H. Park, Preparation of Ultrafine Oxidized Cellulose Mats via Electrospinning. Biomacromolecules, 2004. 5: p. 197-201.
47. W.K. Son, J.H. Youk and T.S. Lee, Electrospinning of Ultrafine Cellulose Acetate Fibers: Studies of a New Solvent System and Deacetylation of Ultrafine Cellulose Acetate Fibers. Journal of Polymer Science: Part B: Polymer Physics, 2004. 42: p. 5-11.
48. H. Jiang, et al., Optimization and Characterization of Dextran Membranes Prepared by Electrospinning. Biomacromolecules, 2004. 5: p. 326-333.
49. D. Li and Y. Xia, Electrospinning of nanofibers: reinventing the wheel? Advanced Materials, 2004. 16: p. 1151-1170.
50. T. Kenny, Knee Injury - Meniscal Cartilage Tear. EMIS, 2011. p.1-3.
51. J.M. Deitzel, et al., The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 2001. 42: p. 261-272.
52. H. Liu and Y.L. Hsieh, Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. Journal of Polymer Science Part B: Polymer Physics, 2002. 40(18): p. 2119-2129.
53. Y.J. Ryu, et al., Transport properties of electrospun nylon 6 nonwoven mats. European Polymer Journal, 2003. 39(9): p. 1883-1889.
54. G. Matthew, et al., Correlations of Solution Rheology with Electrospun Fiber Formation of Linear and Branched Polyesters. Macromolecules, 2004. 37: p. 1760-1767.
55. C.S. Ki, et al., Characterization of gelatin nanofiber prepared from gelatin–formic acid solution. Polymer, 2005. 46(14): p. 5094-5102.
56. A.K. Haghi and M. Akbari, Trends in electrospinning of natural nanofibers. physica status solidi (a), 2007. 204(6): p. 1830-1834.
57. S. Sukigara, et al., Regeneration of Bombyx mori silk by electrospinning—part 1: processing parameters and geometric properties. Polymer, 2003. 44(19): p. 5721-5727.
58. S.H. Tan, et al., Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer, 2005. 46(16): p. 6128-6134.
59. P. Gupta, et al., Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer, 2005. 46(13): p. 4799-4810.
60. M.M. Hohman, et al., Electrospinning and electrically forced jets. II. Applications. Physics of Fluids, 2001. 13(8): p. 2221.
61. H. Fong, I. Chun and D.H. Reneker, Beaded nanofibers formed during electrospinning. Polymer, 1999. 40: p. 4585-4592.
62. P.Q. Pham, U. Sharma and A.G. Mikos, Electrospun Poly(E-caprolactone) Microfiber and Multilayer Nanofiber/Microfiber Scaffolds: Characterization of Scaffolds and Measurement of Cellular Infiltration. Biomacromolecules, 2006. 7: p. 2796-2805.
63. P.K. Baumgarten, Electrostatic Spinning of Acrylic Microfibers. Journal of Colloid and Interface Science, 1971. 36: p. 71-79.
64. L. Huang, et al., Engineered collagen–PEO nanofibers and fabrics. Journal of Biomaterials Science, Polymer Edition, 2001. 12(9): p. 979-993.
65. X. Zong, et al., Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 2002. 43: p. 4403-4412.
66. C. Mit-uppatham, M. Nithitanakul and P. Supaphol, Ultrafine Electrospun Polyamide-6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter. Macromolecular Chemistry and Physics, 2004. 205(17): p. 2327-2338.
67. W. Zuo, et al., Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Polymer Engineering & Science, 2005. 45(5): p. 704-709.
68. B. Kim, et al., Poly(acrylic acid) nanofibers by electrospinning. Materials Letters, 2005. 59(7): p. 829-832.
69. C.J. Buchko, et al., Processing and microstructural characterization of porous biocompatible protein polymer thin films. polymer, 1999. 40: p. 7397-7407.
70. M.M. Demir, et al., Electrospinning of polyurethane fibers. polymer, 2002. 43: p. 3303-3309.
71. S. Megelski, et al., Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers. Macromolecules, 2002. 35: p. 8456-8466.
72. X.M. Mo, et al., Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials, 2004. 25(10): p. 1883-1890.
73. D.S. Katti, et al., Bioresorbable nanofiber-based systems for wound healing and drug delivery: optimization of fabrication parameters. J Biomed Mater Res B Appl Biomater, 2004. 70(2): p. 286-96.
74. Larrondo and J. Manley, Electrostatic Fiber Spinning from Polymer Melts. I. Experimental Observations on Fiber Formation and Properties. Journal of Polymer Science: Polymer Physics Edition, 1981. 19: p. 909-920.
75. Larrondo and J. Manley, Electrostatic Fiber Spinning from Polymer Melts. 11. Examination of the Flow Field in an Electrically Driven Jet. Journal of Polymer Science: Polymer Physics Edition, 1981. 19: p. 921-932.
76. Larrondo and J. Manley, Electrostatic Fiber Spinning from Polymer Melts. 111. Electrostatic Deformation of a Pendant Drop of Polymer Melt. Journal of Polymer Science: Polymer Physics Edition, 1981. 19: p. 933-940.
77. X. Yuan, et al., Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polymer International, 2004. 53(11): p. 1704-1710.
78. L. Wannatong, A. Sirivat, and P. Supaphol, Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene. Polymer International, 2004. 53(11): p. 1851-1859.
79. K.H. Kim, et al., Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. J Biotechnol, 2005. 120(3): p. 327-39.
80. X. Wang, et al., Formation of water-resistant hyaluronic acid nanofibers by blowing-assisted electro-spinning and non-toxic post treatments. Polymer, 2005. 46(13): p. 4853-4867.
81. J.S. Pieper, et al., Crosslinked type II collagen matrices: preparation, characterization, and potential for cartilage engineering. Biomaterials, 2002. 23: p. 3183-3192.
82. C. Xu, Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials, 2004. 25(5): p. 877-886.
83. J. Doshi and D.H. Reneker, Electrospinning Process and Applications of Electrospun Fibers. Journal of Electrostatics, 1995. 35: p. 151-160.
84. H. Fong, et al., Generation of electrospun fibers of nylon 6 and nylon 6-montmorillonite nanocomposite. polymer, 2002. 43: p. 775-780.
85. X. Geng, O.H. Kwon, and J. Jang, Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials, 2005. 26(27): p. 5427-32.
86. C.L. Casper, et al., Controlling Surface Morphology of Electrospun Polystyrene Fibers: Effect of Humidity and Molecular Weight in the Electrospinning Process. Macromolecules, 2004. 37: p. 573-578.
87. M. Li, et al., Electrospun protein fibers as matrices for tissue engineering. Biomaterials, 2005. 26(30): p. 5999-6008.
88. S.V. Madihally and H.W.T. Matthew, Porous chitosan sca!olds for tissue engineering. Biomaterials, 1999. 20: p. 1133-1142.
89. D.R. Olander, General thermodynamics. 2008, Boca Raton : CRC Press.
90. 楊嘉慧,細胞的支架:膠原蛋白,科學人雜誌,2011。
91. J. Myllyharju and K.I. Kivirikko, Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet, 2004. 20(1): p. 33-43.
92. B.S. Kim, C.E. Baez, and A. Atala, Biomaterials for tissue engineering. World J Urol, 2000. 18: p. 2-9.
93. K.E. Kadler, et al., Collagen fibril formation. Biochem. J., 1996. 316: p. 1-11.
94. Grinnell and Frederick, Fibroblast biology in three-dimensional collagen matrices. Trends in Cell Biology, 2003. 13(5): p. 264-269.
95. E. Hohenester and J. Engel, Domain structure and organisation in extracellular matrix proteins. Matrix Biology, 2002. 21: p. 115-128.
96. Y. Yang, et al., Electrospun Composite Mats of Poly[(D,L-lactide)-co-glycolide] and Collagen with High Porosity as Potential Scaffolds for Skin Tissue Engineering. Macromolecular Materials and Engineering, 2009. 294(9): p. 611-619.
97. L.P. Sun, et al., Biological evaluation of collagen-chitosan scaffolds for dermis tissue engineering. Biomed Mater, 2009. 4(5): p. 055008.
98. K. Fujioka, et al., Protein release from collagen matrices. Advanced Drug Delivery Reviews, 1998. 31: p. 247-266.
99. T.V. How, R. Guidoin, and S.K. Young, Engineering design of vascular prostheses. ARCHIVE: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 1989-1996 (vols 203-210), 1992. 206(28): p. 61-71.
100. L. Huang, R.P. Apkarian, and E.L. Chaikof, High-Resolution Analysis of Engineered Type I Collagen Nanofibers by Electron Microscopy. SCANNING, 2001. 23: p. 372-375.
101. J.A. Matthews, et al., Electrospinning of Collagen Type II: A Feasibility Study. Journal of Bioactive and Compatible Polymers, 2003. 15: p. 125-134.
102. T.A. Telemeco, et al., Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning. Acta Biomateral, 2005. 1(4): p. 377-85.
103. K.J. Shields, et al., Mechanical Properties and Cellular Proliferation of Electrospun Collagen Type II. TISSUE ENGINEERING, 2004. 10: p. 1510-1517.
104. K.S. Rho, et al., Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials, 2006. 27(8): p. 1452-61.
105. D.I. Zeugolis, et al., Electro-spinning of pure collagen nano-fibres - just an expensive way to make gelatin? Biomaterials, 2008. 29(15): p. 2293-305.
106. B. Dong, et al., Electrospinning of collagen nanofiber scaffolds from benign solvents. Macromol Rapid Commun, 2009. 30(7): p. 539-42.
107. T, Liu, et al., Photochemical crosslinked electrospun collagen nanofibers: synthesis, characterization and neural stem cell interactions. J Biomed Mater Res A, 2010. 95(1): p. 276-82.
108. M. Krumova, et al., Effect of crosslinking on the mechanical and thermal properties of poly(vinyl alcohol). Polymer, 2000. 41: p. 9265-9272.
109. M.S. Islam and M.R. Karim, Fabrication and characterization of poly(vinyl alcohol)/alginate blend nanofibers by electrospinning method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010. 366(1-3): p. 135-140.
110. L. Ma, Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials, 2003. 24(26): p. 4833-4841.
111. Z.G. Chen, et al., Electrospun collagen–chitosan nanofiber: A biomimetic extracellular matrix for endothelial cell and smooth muscle cell. Acta Biomaterialia, 2010. 6(2): p. 372-382.
112. E. Khor, Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials, 1997. 18: p. 95-105.
113. H.Y. Lin, et al., Pectin-chitosan-PVA nanofibrous scaffold made by electrospinning and its potential use as a skin tissue scaffold. J Biomater Sci Polym Ed, 2013. 24(4): p. 470-84.
114. N.C. Hidvegi, et al., A low temperature method of isolating normal human articular chondrocytes. Osteoarthritis Cartilage, 2006. 14(1): p. 89-93.
115. D.K. Vanderwall, Counting Spermatozoa with a Hemacytometer. Journal of Equine Veterinary Science, 2008. 28: p. 244-246.
116. V.V. Meretoja, et al., The effect of hypoxia on the chondrogenic differentiation of co-cultured articular chondrocytes and mesenchymal stem cells in scaffolds. Biomaterials, 2013. 34(17): p. 4266-73.
117. A.T. Reza and S.B. Nicoll, Hydrostatic pressure differentially regulates outer and inner annulus fibrosus cell matrix production in 3D scaffolds. Ann Biomed Eng, 2008. 36(2): p. 204-13.
118. J.P. Chen, G.Y. Chang and J.K. Chen, Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008. 313-314: p. 183-188.
119. N. Davidenko, et al., Collagen-hyaluronic acid scaffolds for adipose tissue engineering. Acta Biomater, 2010. 6(10): p. 3957-68.
120. L. Tjaderhane, et al., Optimizing dentin bond durability: control of collagen degradation by matrix metalloproteinases and cysteine cathepsins. Dent Mater, 2013. 29(1): p. 116-35.
121. M. Shakibaei, P.D. Souza and H.J. Merker, Integrin expression and collagen type II implicated in maintenance of chondrocyte shape in monolayer culture: an immunomorphological study. Cell Biology International, 1997. 21: p. 115-125.
122. J.L. Palmer, A.L. Bertone, and H. McClain, Assessment of Glycosaminoglycan Concentration in Equine Synovial Fluid as a Marker of Joint Disease. Can J Vet Res, 1995. 59: p. 205-212.
123. J.L. Ifkovits, H.G. Sundararaghavan, and J.A. Burdick, Electrospinning fibrous polymer scaffolds for tissue engineering and cell culture. J Vis Exp, 2009(32).
124. H.G. Sundararaghavan and J.A. Burdick, Gradients with depth in electrospun fibrous scaffolds for directed cell behavior. Biomacromolecules, 2011. 12(6): p. 2344-50.
論文全文使用權限:不同意授權