現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:物流中心訂單排序問題之研究 [以論文名稱查詢館藏系統]
論文英文名稱:A Study on Order Sequencing Problem in a Distribution Center [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:管理學院
系所名稱:工業工程與管理研究所
畢業學年度:98
出版年度:99
中文姓名:林宇璠
英文姓名:Yu-Fan Lin
研究生學號:97378060
學位類別:碩士
語文別:中文
口試日期:2010-06-17
論文頁數:45
指導教授中文名:吳建文
指導教授英文名:Chien-Wen Wu
口試委員中文名:王明展;陳鵬文
中文關鍵詞:訂單排序訂單揀貨演算法排程問題物流中心
英文關鍵詞:Order sequencingOrder pickingalgorithmScheduling problemDistribution center
論文中文摘要:本論文針對萊爾富超商物流中心的雜誌揀貨區進行研究,其揀貨作業方式採同步傳遞的接力式分區揀貨系統,本研究希望能提升該揀貨系統的效率,根據觀察,「訂單排序」是影響此揀貨系統效率的重要因素。由於過去並沒有此研究方向的相關文獻,經由適當的轉換,將顧客訂單視為加工的工件,將揀貨系統的揀貨站視為加工的機台,則可將揀貨系統的訂單排序問題轉換成流線型生產工廠的排程問題(PFSP)。

過往用來解PFSP的方法可以分為:(1)精確方法、(2)建構式方法、(3)改善方法,而改善方法是當中能以較快速度求得臨近最佳解的方法,本研究利用能有效解決PFSP的H(2)演算法結合ILS演算法來產生訂單排序,經實驗證實,H(2)演算法結合ILS演算法亦能有效的解決揀貨區的訂單排序問題。
論文英文摘要:Order sequencing is an important management issue in the order picking systems. A good order sequencing approach can improve significantly the performance of the order picking system. Approaches are very much required to solve the order sequencing problem.

Because of the similarities between the order sequencing problem and the permutation flowshop sequencing problem (PFSP), we proposed the use of the methods which solved the PFSP well to solve the order sequencing problem. In the literature, the ILS algorithm combined with the H(2) algorithm has been reported to have good performance on solving the PFSP. Therefore, we proposed the ILS algorithm combined with the H(2) algorithm to solve the order sequencing problem. Experiments show that such an approach achieves good performance on solving the order sequencing problem.
論文目次:摘 要i
ABSTRACTii
誌 謝iii
目 錄iv
表 目 錄vi
圖 目 錄vii
第 一 章 緒論1
1.1 研究背景與動機1
1.2 研究目的2
1.3 研究範圍3
1.4 研究流程3
第 二 章 文獻探討5
2.1 物流中心5
2.2 訂單揀貨的最佳化方法6
2.3 分區揀貨7
2.3.1 分區揀貨-工作量平衡9
2.3.2接力式分區揀貨系統-同步傳遞10
2.4 流線型生產工廠的排程問題,PFSP11
2.4.1 PFSP的相關文獻12
2.4.2 重複區域搜尋法,ILS14
2.4.3 H(x)演算法15
2.5 小結16
第 三 章 問題描述與研究方法17
3.1 萊爾富超商物流中心雜誌揀貨區的運作模式17
3.1.1 訂單排序的重要性18
3.2「同步傳遞的接力式分區揀貨系統」與「流線型生產工廠」的差異性20
3.3 參數定義與數學模型20
3.3.1 基本假設21
3.3.2 參數定義21
3.3.3 數學模型21
3.4 研究方法22
3.4.1 H(2)演算法23
3.4.1.1 H(2)演算法考量因素一23
3.4.1.2 H(2)演算法考量因素二23
3.4.1.3 H(2)演算法步驟24
3.4.1.4 H(2)演算法–範例說明25
3.4.2 重複區域搜尋法,ILS27
3.4.2.1 ILS演算法–範例說明29
3.4.3 啟發式方法30
3.4.3.1 啟發式方法–範例說明32
3.4.4 研究方法演算流程33
第 四 章 實驗設計與實驗結果34
4.1 實驗設計34
4.1.1 資料來源34
4.1.2 實驗參數設定34
4.2 實驗結果35
4.2.1 實驗結果分析37
第 五 章 結論與建議39
5.1 結論39
5.2 後續研究與建議39
參考文獻41
論文參考文獻:[1] 經濟部商業司,2000台灣物流年鑑,台北:經濟部商業司,2000。
[2] R.H. Ballou, Business Logistics Management, NJ: Prentice-Hall, 1998.
[3] E.H. Frazelle, World-class warehousing and Material Handling, NY: McGraw Hill, 2002.
[4] J.A. Tompkins, J.A. White, Y.A. Bozer, E.H. Frazelle and J.M.A. Tanchoco, Facilities Planning, NJ: John Wiley & Sons, 2003.
[5] M. Goetschalckx and J. Ashayeri, “Classification and design of order picking systems,” Logistics World, 1989 (June) , pp. 99-106.
[6] Rene’ de Koster, Tho Le-Duc and Kees Jan Roodbergen, “Design and control of warehouse order picking: A literature review,” European Journal of Operational Research, vol. 182, 2007, pp. 481-501.
[7] E.H. Frazelle, “Small parts order picking: equipment and strategy,” Proceedings of the 10th International Conference on Automation in Warehousing, Dallas, TX, 1989, pp. 115-145.
[8] R. Tolliver, “Order picking basics at avon products,” Material Handling Focus ’89, Material Handling Research Center, Georgia Institute of Technology, Atlanta, GA, 1989.
[9] X.G. Dong, H.K. Huang and P. Chen, “An iterated local search algorithm for the permutation flowshop problem with total flowtime criterion,” Computers & Operations Research, vol. 36, 2009, pp. 1664-1669.
[10] 劉忠政,播種式揀貨系統之規劃,碩士,國立中央大學,桃園,2007。
[11] S.S. Heragu, L. Du, R.J. Mantel and P.C. Schuur, “Mathematical model for warehouse design and product allocation,” International Journal of Production Research, vol. 43, no. 2, 2005, pp. 327-338.
[12] C.C. Jane and Y.W. Laih, “A clustering algorithm for item assignment in a synchronized zone order picking system,” European Journal of Operational Research, vol. 166, no. 2, 2005, pp. 489-496.
[13] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys, “The Traveling Salesman Problem,” Chichester : Wiley , 1995.
[14] R.L. Speaker, “Bulk order picking,” Industrial Engineering, vol. 7, no. 12, 1975, pp. 14-18.
[15] R. De Koster, “Performance approximation of pick-to-belt orderpicking systems,” European Journal of Operational Research, vol. 72, 1994, pp. 558-573.
[16] M. Yu and Ren’e De Koster, “Performance approximation and design of pick-and-pass order picking systems,” IIE Transactions, vol. 40, no. 11, 2008, pp. 1054-1069.
[17] H. Brynze’r and M.I. Johansson, “Design and performance of kitting and order picking systems,” International Journal of Production Economics, vol. 41, 1995, pp. 115-125.
[18] C.C. Jane, “Storage location assignment in a distribution center,” International Journal of Physical and Logistics Management, vol. 30, no. 1, 2000, pp. 55-71.
[19] 陳書群,儲位指派在同步區域訂單揀貨系統下之研究,碩士,國立臺灣科技大學,臺北,2009。
[20] M.R. Garey, D.S. Johnson and R. Sethi, “The complexity of flowshop and jobshop
Scheduling,” Mathematics of Operations Research, vol. 1, 1976, pp. 117-129.
[21] M. Nawaz, E.E. Enscore and I. Ham, “A heuristic algorithm for the m-machine, n-job flowshop sequencing problem,” OMEGA, vol. 11, 1983, pp. 91-95.
[22] T. Yamada and C.R. Reeves, “Solving the permutation flowshop scheduling
problem by genetic local search.” Proceedings of IEEE international conference
on evolutionary computation, 1998, pp. 230-234.
[23] C. Rajendran and H. Ziegler, “Ant-colony algorithms for permutation flowshop
scheduling to minimize makespan/total flowtime of jobs,” European Journal of
Operational Research, vol. 155, 2004, pp. 426-438.
[24] C. Rajendran, H. Ziegler, “Two ant-colony algorithms for minimizing total flowtime in permutation flowshops,” Computers and Industrial Engineering, vol. 48, 2005, pp. 789-797.
[25] M.F. Tasgetiren, Y-C Liang, M. Sevkli and G. Gencyilmaz, “A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem,” European Journal of Operational Research, vol. 177, 2007, pp. 1930-1947.
[26] A. El-Bouri, S. Balakrishnan and N.Popplewell, “A neural network to enhance local search in the permutation flowshop,” Computers and Industrial Engineering, vol. 49, 2005, pp. 182-196.
[27] E. Ignall and L. Schrage, “Application of the branch and bound technique to some flowshop scheduling problem,” Operations Research, vol. 13, 1965, pp. 400-412.
[28] S.P. Bansal, “Minimizing the sum of completion times of n-jobs over M-machines in a flowshop - a branch and bound approach,” AIIE Transactions, vol. 9, 1997, pp. 306-311.
[29] F.D. Croce, V. Narayan and R. Tadei, “The two-machine total completion time flow shop problem,” European Journal of Operational Research, vol. 90, 1996, pp. 227-237.
[30] F.D. Croce, M. Ghirardi and R. Tadei, “An improved branch-and-bound algorithm for the two machine total completion time flow shop problem,” European Journal of Operational Research, vol. 139, 2002, pp. 293-301.
[31] E.F. Stafford, “On the development of a mixed integer linear programming model for the flowshop sequencing problem,” Journal of the Operational Research Society, vol. 39, 1988, pp. 1163-1174.
[32] J.N.D. Gupta, “Heuristic algorithms for multistage flowshop scheduling problem,” AIIE Transactions, vol. 4, 1972, pp. 11-18.
[33] L.F. Gerlders and N. Sambandam, “Four simple heuristics for scheduling a flow-shop,” International Journal of Production Research, vol. 16, 1978, pp. 221-231.
[34] S. Miyazaki, N. Nishiyama and F. Hashimoto, “An adjacent pairwise approach to the mean flowtime scheduling problem,” Journal of the Operations Research Society of Japan, vol. 21, 1978, pp. 287-299.
[35] S. Miyazaki and N. Nishiyama, “Analysis for minimizing weighted mean flow-time in flow-shop scheduling,” Journal of the Operations Research Society of Japan, vol. 23, 1980, pp. 118-132.
[36] J.C. Ho and Y.L. Chang, “A new heuristic for the n-job, M-machine flow-shop problem,” European Journal of Operational Research, vol. 52, 1991, pp. 194-202.
[37] C. Rajendran and D. Chaudhuri, “A flowshop scheduling algorithm to minimize total flowtime,” Journal of the Operations Research Society of Japan, vol. 34, 1991, pp. 28-45.
[38] C. Rajendran and D. Chaudhuri, “An efficient heuristic approach to the scheduling of jobs in a flowshop,” European Journal of Operational Research, vol. 61, 1992, pp. 318-325.
[39] C. Rajendran and H. Ziegler, “An efficient heuristic for scheduling in a flowshop to minimize total weighted flowtime of jobs,” European Journal of Operational Research, vol. 103, 1997, pp. 129-138.
[40] J.C. Ho, “Flowshop sequencing with mean flowtime objective,” European Journal of Operational Research, vol. 81, 1995, pp. 571-578.
[41] C. Wang, C. Chu and J.M. Proth, “Heuristic approaches for n/m/F/ scheduling problems,” European Journal of Operational Research, vol. 96, 1997, pp. 636-644.
[42] J.Y. Liu and C.R. Reeves, “Constructive and composite heuristic solutions to the P// scheduling problem,” European Journal of Operational Research, vol. 132, 2001, pp. 439-452.
[43] X.P. Li, C. Wu C, “An efficient constructive heuristic for permutation flow shops to
minimize total flowtime,” Chinese Journal of Electronics, vol. 14, no. 2, 2005, pp. 203-208.
[44] E. Taillard, “Some efficient heuristic methods for the flow shop sequencing problem,” European Journal of Operational Research, vol. 47, 1990, pp. 65-74.
[45] R. Ruiz and C. Maroto, “A comprehensive review and evaluation of permutation flowshop heuristics,” European Journal of Operational Research, vol. 165, 2005, pp. 479-494.
[46] P.J. Kalczynski and J. Kamburowski, “On the NEH heuristic for minimizing the makespan in permutation flow shops,” OMEGA, vol. 35, 2007, pp. 53-60.
[47] X.Y. Dong, H.K. Huang and P. Chen, “An improved NEH-based heuristic for
the permutation flowshop problem,” Computers and Operations Research, vol. 35, pp. 3962-3968.
[48] H.S. Woo and D.S. Yim, “A heuristic algorithm for mean flowtime objective in flowshop scheduling,” Computers and Operations Research, vol. 25, 1998, pp. 175-182.
[49] J.M. Framinan and R. Leisten, “An efficient constructive heuristic for flowtime
minimisation in permutation flow shops,” OMEGA, vol. 31, 2003, pp. 311-317.
[50] C. Rajendran, “Heuristic algorithm for scheduling in a flowshop to minimize total flowtime,” International Journal of Production Economics, vol. 29, 1993, pp. 65-73.
[51] O. Martin, S.W. Otto and E.W. Felten, “Large-step markov chains for the traveling salesman problem,” Complex Systems, vol. 5, no. 3, 1991, pp. 299-326.
[52] O. Martin and S.W. Otto, “Combining simulated annealing with local search heuristics,” Annals of Operations Research, vol. 63, 1996, pp. 57-75.
[53] H.R. Lourenco, “Job-shop scheduling: computational study of local search and large-step optimization methods,” European Journal of Operational Research, vol. 83, 1995, pp. 347-364.
[54] T. Stützle, “Applying iterated local search to the permutation flow shop problem,” Technical Report, AIDA-98-04, FG Intellektik, TU Darmstadt, 1998.
[55] J.M. Framinan, R. Leisten and R. Ruiz-Usano, “Comparison of heuristic for flowtime minimization in permutation flowshops, ” Computers and Operations Research, vol. 32, 2005, pp. 1237-1254.
[56] E. Taillard, “Benchmarks for basic scheduling problems,” European Journal of Operational Research, vol. 64, 1993, pp. 278-285.
[57] J.M. Jarvis and E.D. McDowell, “Optimal product layout in an order picking warehouse, ” IIE Transactions, vol. 23, no. 1, 1991, pp. 93-102.
論文全文使用權限:同意授權於2012-12-01起公開