現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:整合性生物程序去除低碳源高溶氧污水營養鹽特性之研究 [以論文名稱查詢館藏系統]
論文英文名稱:The Research of Low Carborn Sources/High DO Sewage Nutrient Removal by Using Integrated Biological Processes [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:工程科技研究所
畢業學年度:98
出版年度:99
中文姓名:周文祥
英文姓名:Wen-Shang Chou
研究生學號:90679007
學位類別:博士
語文別:中文
口試日期:2010-07-12
論文頁數:127
指導教授中文名:張添晉
口試委員中文名:楊萬發;歐陽嶠暉;曾四恭;白子易;游勝傑;陳孝行
中文關鍵詞:生物營養去除(BNR)ISD-RBCdenipho UnitMBR部分硝化/脫硝anammoxPCRDGGE16S rRNA定序
英文關鍵詞:BNRISD-RBCdenipho UnitMBRpartial nitrification/denitrificationanammoxPCRDGGE16S rRNA
論文中文摘要:低碳源高溶氧污水之特性常導致生物營養去除(BNR)污水處理廠之氮磷處理效率不佳,因此本研究藉由結合污泥消化-RBC與脫硝除磷程序於一體之ISD-RBC denipho unit(Integrate Sludge Digestion with RBC denitrogen-phosphorus unit)與薄膜反應槽MBR(Membrane Bioreactor)等整合性生物程序,以克服污水低碳源高溶氧之問題,同時探討其營養鹽去除之特性與部分硝化/脫硝、Anammox之操作可行性。
由研究結果顯示,無論是ISD-RBC或MBR處理程序,均無法使處理流程形成厭氧/好氧(A/O)環境,因此無法以生物厭氧釋磷好氧超量攝磷之生物程序達到除磷目的,其PO4-P去除量,主要為微生物增殖之合成量。
由ISD-RBC之研究可獲致:當無提高水溫操作,硝化反應係以完全硝化反應(completely nitrification)為主;當進流水PO4-P濃度介於為1.3-1.7 mg/l時,欲使出流水之PO4-P濃度低於1 mg/l,HRT至少需0.92小時以上,TCOD/PO4-P比值需大於37.2,且該C/P比值較典型污水之TCOD/TP>30-33來得高;其比硝化速率介於23-43 mg NH4-N/m2.hr,當TCOD/NH4-N比值由5提高至9,SCOD/NH4-N比值由4提高至8將使比硝化速率降低50%;當進流水TN濃度為14.8-18.1 mg /l時,欲使TN去除率達50%,HRT最少需達8小時以上,另若欲達到典型BNR程序之75%去除率,則HRT至少需達19小時以上;另當提高水溫至30-35℃操作,有NO2-N累積與脫硝反應,經由生物技術之PCR、DGGE與16S rRNA定序結果顯示,RBC圓盤上與營養鹽去除有關且相似度達90%以上之菌種有Rhodocyclus group(DNPAO)、Unclassified Gammaproteobacteria及Anommox bacterium clone 2(AY518553)。
MBR前增設厭氧槽處理低碳源高DO污水,其整體處理流程均維持在高DO(3.4-5.8 mg/l)環境,因此無法使系統成為NO2-N累積之部份硝化系統;其TN之去除率可達75-80%,且TN去除量與SCOD/TN呈現對數關係:TN去除量TNr(mg/l)=-2.308ln(SCOD/TN)+11.484,至於PO4-P去除率則僅為21.5-25.7%,且PO4-P去除量與SCOD/PO4-P並無任何相關性。
論文英文摘要:The low carborn sources/high DO sewage always decreases the BNR process nutrient removal efficiency. In this study, a ISD-RBC denipho unit(Integrate Sludge Digestion with RBC denitrogen-phosphorus unit)and MBR(Membrane Bioreactor) was operated to overcome low carborn sources/high DO problems and to investigate nutrient removal characteristics, partial nitrification/denitrification, anammox reaction performance.
The results of the experiments showed that the phosphate can’t be removed by biological process used by no mater ISD-RBC or MBR, because of the anaerobic and aerobic (A/O) process can’t be achieved. The PO4-P removal quantities were taked to synthesize biomass.
The results of ISD-RBC experiments showed that if the operated temperature didn’t control to 30-35℃, the nitrification reaction would be trended to completely nitrification. As the PO4-P influent concentration between 1.3-1.7 mg/l, in order to achieve the phosphate effluent concentration reduced to 1 mg/l below, the HRT needed to be greater than 0.92 hour and TCOD/PO4-P needed to be greater than 37.2. The specific NH4-N nitrification rate was 23-43 mg NH4-N/m2.hr. As the TCOD/NH4-N ratio from 5 to 9, SCOD/NH4-N ratio from 4 to 8, the specific NH4-N nitrification rate would decrease 50%. As the TN influent concentration between 14.8-18.1 mg/l, in order to achieve the TN removal rate to 50% and 75% respectively, the HRT needed to be 8 and 19 hours respectively. As increased the ISD-RBC operated temperature to 30-35℃, there was NO2-N accumulated and denitrification to occur. There were nutrient removal related bacteria identified in SRBC1 and SRBC2 plate by using PCR, DGGE and 16S rRNA sequencing showed that were similar to Rhodocyclus group(DNPAO)、Unclassified Gammaproteobacteria and Anommox bacterium clone 2(AY518553), the similarity were greater than 90%.
The results of MBR experiments showed that, there was no NO2-N accumulated to occur, because of high DO(3.4-5.8 mg/l) in MBR. The TN removal rate was 75-80%, and the TN removal quqntities TNr(mg/l)=-2.308ln(SCOD/TN) +11.484. The phosphate removal rate was 21.5-25.7%.
論文目次:中文摘要 i
英文摘要 iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 xi
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的與內容 1
1.3 研究架構 3
第二章 文獻回顧 5
2.1 生物脫氮除磷 5
2.1.1 生物脫氮 5
2.1.2 生物除磷 8
2.2 併同處理碳、氮、磷程序 9
2.2.1 A2/O程序 10
2.2.2 修正Bardenpho程序 11
2.2.3 UCT及VIP程序 11
2.2.4 TNCU程序 13
2.2.5 MBR程序 15
2.3 部分硝化脫硝(partial nitrification/denitrification) 21
2.3.1 部分硝化脫硝程序 21
2.3.2 SHARON/ANAMMOX程序 23
2.3.3 DNPAO之部分硝化脫硝 28
2.4 菌相分析 31
2.4.1 聚合酶鏈所反應(PCR) 31
2.4.2 變性梯度明膠電泳法(DGGE) 32
2.4.3 基因轉殖 35
第三章 實驗設備與方法 37
3.1 實驗模廠 37
3.1.1 ISD-RBC denipho Unit 37
3.1.2 MBR 42
3.2 實驗架構 44
3.2.1 ISD-RBC denipho Unit 44
3.2.2 MBR 45
3.3 脫硝攝磷批次實驗 47
3.4 實驗方法 49
3.5 菌相分析 50
3.6 實驗分析設備 55
第四章 結果與討論 57
4.1 ISD-RBC之低碳源高DO污水無迴流污泥之處理特性 57
4.1.1 污泥消化之探討 57
4.1.1.1 DO、pH變化 57
4.1.1.2 COD之變化 59
4.1.1.3 NH4-N與PO4-P之變化 61
4.1.2 碳氮磷處理結果 62
4.1.3 磷去除特性探討 66
4.1.3.1 COD對於磷去除之影響 66
4.1.3.2 DO、HRT與磷去除之關係 68
4.1.4 氮去除特性探討 73
4.1.4.1 DO、HRT與硝化之關係 74
4.1.4.2 COD對於硝化特性之影響 80
4.1.4.3 COD、HRT與TN去除之關係 82
4.2 ISD-RBC之低碳源高DO污水迴流污泥、提高水溫至30-35℃
之處理特性 85
4.2.1 碳氮磷處理特性 85
4.2.2 PO4-P去除特性之探討 86
4.2.3 部分硝化與anammox除氮反應之探討 88
4.2.4 菌相特性分析 90
4.3 SBMBR之典型污水處理特性 94
4.3.1 碳氮磷處理特性 94
4.3.2 釋磷攝磷與硝化脫硝反應特性 95
4.4 SBMBR硝化脫硝與釋磷攝磷批次實驗結果 96
4.4.1 硝化之特性探討 96
4.4.2 脫硝之特性探討 99
4.4.3 磷釋/攝磷之特性探討 101
4.4.4 SBMBR程序最佳化 102
4.4.5 菌相特性分析 104
4.5 MBR之低碳源高DO污水處理特性 105
4.5.1 碳氮磷處理特性 106
4.5.2 氮磷去除特性探討 107
第五章 結論與建議 110
5.1 結論 110
5.2 建議 111
參考文獻 113
附錄
A DNA萃取方法 125
B Cloning實驗步驟 126
C DGGE藥劑配方 127
論文參考文獻:[1] 經濟部水利署臺北水源特定區管理局,臺北水源特定區污水下水道系統未納戶污水處理實施計畫(第三次修正版),2004,第2-20-2-29頁。
[2] 經濟部水利署臺北水源特定區管理局,臺北水源特定區污水處理廠處理技術改善評估,2008。
[3] 上水股份有限公司,翡翠水庫上游污水下水道系統操作維護工作98年度第一次營運管理評鑑作業(定期檢查)工作報告書,2009,第3-24-3-51頁。
[4] Metcalf and Eddy, Wastewater Engineering: Treatment and Reuse, 4th Edition, New York: McGraw-Hill, USA. 2003.
[5] C. F.Ouyang, J. L. Su and J. F. Liou, “Nitrogen and Phosphorus Removal by RBC Add-in A2/0 process,” Proceedings of World Congress III on Engineering and Environment, Beijing, China, 1993, pp. 454-461.
[6] 歐陽嶠暉,「因應自來水水源區新放流水標準之污水處理技術」,第十屆下水道研討會論文集,台北,2000,第15-22頁。
[7] 楊惠娟,厭氧缺氧好氧RBC程序之釋磷攝磷及除氮特性之研究,碩士論文,國立中央大學環境工程研究所,中壢,1996。
[8] 蘇昭郎,厭氧缺氧好氧RBC程序去除氮磷之研究,博士論文,國立中央大學環境工程研究所,中壢,1996。
[9] 莊順興,脫氮除磷代謝模式與反應動力之研究,博士論文,國立中央大學環境工程研究所,中壢,1997。
[10] 張謝淵,以AOAO程序處理都市污水之特性,博士論文,國立中央大學環境工程研究所,中壢,2000。
[11] P. J. Kerrn-Jespersen and M. Henze, “Biological Phosphorus Uptake under Anoxic and Aerobic Condition,” Water Research, vol. 27, no. 4, 1993, pp. 617-624.
[12] 謝耀聰,薄膜生物反應槽脫硝攝磷行為之探討,碩士論文,私立中原大學土木工程學系,中壢,2005。
[13] E. Guillen-Jimenez, S. Alverez-Mateo, F. Romero-Guzman and J. Pereda-Martin, “Bio-mineralization of organic matter in dairy wastewater, as affected by pH. The evolution of ammonium and phosphates,” Water Research, vol. 34, no. 4, 2000, pp. 1215-1224.
[14] J. L. Barnard, “Cut P and N without Chemicals,” Water and Wastes Eng., vol. 11, no. 1, 1974, pp. 33-36.
[15] J. L. Barnard, “Cut P and N without Chemicals,” Water and Wastes Eng., vol. 11, no. 2, 1974, pp. 41-44.
[16] 洪仁陽譯,生物去除營養物質之廢水處理廠的設計與改裝,台北:國立編譯館,1999。
[17] C. W. Randall, “The Development of Energy Efficient Activated Sludge Systems Through Utilization of Nutrient Removal Processes,” Toxic and Harzardous Wastes, Proceedings of the Sixteenth Mid-Atlantic Industrial Waste Conference, Edited by M. D. LaGrega and D. A. Long, Technomic Publishing Company, Inc., 1984, pp. 52-63.
[18] G. T. Daigger, C. W. Randall, G. D. Waltrip, E. D. Romm and L. M. Morales, “Factors Affecting Biological Phosphorus Removal for a University of Cape Town Type Process Applied in a High Rate Mode,” Proceedings, IaAWPRC International Specialized Conference, Biological Phosphate Removal from Wastewater, Rome, Italy, September 28-30, 1987, pp. 177-184 in Biological Phosphate Removal from Wastewater, R. Ramadori, Editor, Pergamon Press.
[19] K. Brindle and T. Stephenson, “The application of membrane biological reactors for the treatment of wastewaters,” Biotechnol. Bioeng., vol. 49, 1996, pp. 601-610.
[20] T. Stephenson, S. Judd, B. Jefferson and K. Brindle, Membrane bioreactors for wastewater treatment, London, IWA Publishing, 2000.
[21] C. Wisniewski, “Membrane Bioreactor for Water Reuse,” Desalination, vol. 203, 2007, pp.15-19.
[22] 范姜仁茂、莊連春、曾迪華、廖述良、游勝傑、梁德明,「廢水處理技術,薄膜生物反應器(MBR)於廢水處理之技術評析」,工業污染防治,第109期, 2009,第49-96頁。
[23] P. Cote, M. Masini, and D. Mourato, “Comparison of Membrane Options for WaterReuse and Reclamation,” Desalination, vol. 167, 2004, pp. 1-11.
[24] Y. T. Kang, Y. H. Cho, and E. H. Chung, “Development of the WastewaterReclamation and Reusing System with a Submerged Membrane BioreactorCombined Bio-Filtration,” Desalination, vol. 202, 2007, pp. 68-76.
[25] C. Visvanathan, R. B. Aim, and K. Parameshwaran, “Membrane Separation Bioreactors for Wastewater Treatment, Critical Reviews,” Environmental Science and Technology, vol. 30, 2000, pp. 1-48.
[26] T. A. Peters, R. Gunther, and K. Vossenkaul, “Membrane Bioreactors in Wastewater Treatment,” Filtration and Separation, vol. 37, 2000, pp. 18-21.
[27] S. Gonzalez, M. Petrovic and D. Barcelo, “Removal of a Broad Range of Surfactants from Municipal Wastewater- Comparison between Membrane Bioreactor and Conventional Activated Sludge Treatment,” Chemosphere, vol. 67, 2007, pp. 335-343.
[28] J.Patel, G. Nakhla, and A. Margaritis, “Optimization of Biological Nutrient Removal in a Membrane Bioreactor System,” Journal of Environmental Engineering, vol. 131, 2005, pp. 1021-1029.
[29] B. Q. Liao, J. T. Kraemer, and D. M. Bagley, “Anaerobic Membrane Bioreactors: Applications and Research Directions, Critical Reviews,” Environmental Science and Technology, vol. 36, 2006, pp. 489-530.
[30] S. S. Adham, R. S. Trussell, P. Gagliardo, D. Jenkins, and R. R. Trussell, Membrane Bioreactors: Feasibility and Use in Water Reclamation, Project #98-CTS-5, Water Environment Research Foundation, USA, 2001.
[31] 紹信、洪仁陽、陳誼彰、彭明鏡、張王冠、張敏超,「MBR處理染整廢水之功能及效益評估」,產業環保工程實務技術研討會論文集,經濟部工業局,2003,第231-245頁。
[32] C. Pierre, Metzger ULI, M. Richard, H. Fritz and C. Vicki, “Characterization of polymeric fouling in membrane bioreactors and the effect of different filtration modes,” Journal of Membrane Science vol. 301, 1998, pp. 180-189.
[33] C. Pierre, B. Herve and P. Matthieu, “Immersed Membranes Activated Sludge Process Applied to the Treatment of Municipal Wastewater,” Water Science and Technology, vol. 38, 1998, p. 437.
[34] 鄭華安,工業區廢水二級處理放流水回收再利用技術研究,碩士論文,國立成功大學環境工程研究所,台南,2000。
[35] 陳育仁,利用循序批分式薄膜生物反應槽(SBMBR)及純氧曝氣作為廢水回收之探討,碩士論文,私立東海大學環境科學研究所,台中,2001。
[36] 賴勇良,利用微胞薄膜分離系統分離廢水中有機物之研究,碩士論文,國立屏東科技大學環境工程與科學研究所,屏東,2002。
[37] 張王冠、洪仁陽、鄒文源,MBR技術應用於廢水處理之案例探討,新竹:財團法人工業技術研究院環境與安全衛生技術發展中心,2003。
[38] 陳建銘,生物薄膜程序處理合成生活污水,碩士論文,國立交通大學環境工程研究所,新竹,2002。
[39] 康美祝,MBR除氮系統特性之研究,碩士論文,國立中央大學環境工程研究所,中壢,2002。
[40] 林春宗,利用循序批分式薄膜生物反應槽(SBMBR)改善養殖循環水質之研究,碩士論文,嘉南藥理科技大學環境工程與科學系,台南,2005, 第19頁。
[41] B. B. Colliver and T. Stephenson, “Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers,” Biotechnology Advances 18, 2000, pp. 219–232.
[42] 李晔、胡海,「生物脫氮工艺技术的研究进展」,工业安全与环保,第29卷,第1期,2003,第17-19页。
[43] 卢刚、郑平、夏凤毅,「含氨废水短程硝化工艺的探讨」,浙江大學學報:农业与生命科學,第30卷,第3期,2004,第241-246页。
[44] J. W. Mulder, J. O. J. Duin, J. Goverde, W. G. Poiesz, H. M. van Veldhuizen, R. van Kempen and P. Roeleveld, “Full-Scale Experience with the SHARON Process Through the Eyes of the Operators,” Water Environment Foundation: WEFTEC® vol. 06, 2006, pp. 5256-5270.
[45] STOWA, Treatment of nitrogen-rich return flows of sewage treatment plants. Single reactor system for removal of ammonium over nitrite., STOWA report 96-01, Dutch, 1996.
[46] C. Hellinga, A. A. J. C. Schellen, J. W. Mulder, M. C. M. van Loosdrecht and J. J. Heijnen, “The SHARON-process; an innovative method for nitrogen removal from ammonium rich waste water,” Water Science and Technology, vol. 37, no. 9, 1998, pp. 135-142.
[47] C. Hellinga, M.C.M. van Loosdrecht and J.J. Heijnen, “Model Based Design of a Novel Process for Nitrogen Removal from Concentrated Flows,” Mathematical and Computer Modelling of Dynamical Systems, vol. 5, no. 4, 1999, pp. 351-371.
[48] R. van Kempen, J.W. Mulder, C.A. Uijterlinde and M.C.M. Loosdrecht, “Overview: full scale experience of the SHARON® process for treatment of rejection water of digested sludge dewatering,” Water Science and Technology, vol. 44, no. 1, 2001, pp. 145-152.
[49] S. Logemann, J. Schantl, S. Bijvank, M. C. M. van Loosdrecht, J. G. Kuenen and M. S. M. Jetten, “Molecular microbial diversity in a nitrifying reactor system without sludge retention,” FEMS Microbiol. Ecol., vol. 27, 1998, pp. 239-249.
[50] 陳炳勳、廖宣淵、蔡富帆、林雅惠、丁文輝,「Anammox菌馴養」,崑山科技大學環境工程系專題研究報告,2006。
[51] 曹锡章、张畹蕙,无机化学,高教出版社(第二版),1983。
[52] A.A. van de Graaf, A. Mulder, P. de Bruijn, M.S.M. Jetten, L.A. Robertson and J.G. Kuenen, “Anaerobic oxidation of ammonium is a biologically mediated process,” Appl. Environ. Microbiol. vol. 61, 1995, pp. 1246-1251.
[53] M. Strous, J. A. Fuerst, J. G. Kuenen and M. S. M. Jetten, “Missing lithotroph identified as new Planctomycete,” Nature, 1999.
[54] 杜兵,司亚安,「推流式固定化生物反应器培养ANAMMOX菌」,中国给水排水,第19卷,第17期,2003,第62-65頁。
[55] 杜兵,司亚安,「ANAMMOX微生物高负荷培养方法研究」,给水排水,第30卷,第10期,2004,第33-36頁。
[56] 刘寅,杜兵,司亚安,孙艳玲,申立贤,「厌氧氨氧化菌的培养与推流式反应器氨厌氧工艺」,环境科学,第26卷,第2期,2005,第137-141頁。
[57] M. Strous, E. van Gerven, J. G. Kuenen and M. S. M. Jetten, “Effect of aerobic and Microaerobic conditions on anaerobic ammonium-oxidizing (anammox) sludge,” Apply and Environmental Microbiology, vol. 6, 1997, pp. 2446-2448.
[58] M. Strous, J. J. Heijnen and J. G. Kuenen, “The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammomium-oxidizing microorganisms,” Applied Microbiol. Biotechnol., vol. 50, 1998, pp. 589-596.
[59] E. I. P. Volcke, S. W. H. Van Hulle, B. M. R. Donckels, M. C. M. van Loosdrecht and P. A. Vanrolleghem, “Coupling the SHARON process with Anammox: Model-based scenario analysis with focus on operating costs,” Water Science and Technology, vol. 52, no. 4, 2005, pp.107-115.
[60] 郝晓地,「荷兰鹿特丹DOKHAVEN污水处理厂介绍」,给水排水,第129卷,第110期,2003。
[61] Y. Comeau, K. J. Hall, R. E. W. Hancock and W. K. Oldham, “Biochemical model for enhanced biological phosphorus removal,” Water Research, vol. 20, no. 12, 1986, pp. 1511-1521.
[62] Y. Comeau, K. J. Hall and W. K. Oldham, “Indirect polyphosphate quantification in activated sludge,’ Wat. Pollut. Res. J. Canada, vol. 25, no. 2, 1990, pp. 161-74.
[63] D. Jenkins and V. Tandoi, “The applied microbiology of enhanced biological phosphate removal accomplishments and needs,” Water Research, vol. 25, no. 12, 1991, pp. 1471-1478.
[64] W. van Starkenburg, J. H. Rensink and G. B. J. Rijs, “Biological P-removal: State of the art in the Netherlands,” Water Science and Technology, vol. 27, no. 5-6, 1993, pp. 317-328.
[65] J. P. Kerrn-Jespersen, M. Henze and R. Strube, “Biological phosphorus release and uptake under alternating anaerobic and anoxic conditions in a fixed-film reactor,” Water Research, vol. 28, no. 5, 1994, pp. 1253-1255.
[66] T. Kuba, A. Wachtmeister, M. C. M. van Loosdrecht and J. J. Heijnen, ”Effect of Nitrate on Phosphorus Release in Biological Phosphorus Removal System,” Water Science and Technology, vol. 30, no. 6, 1994, pp. 263-269.
[67] R. Šorm, G. Bortone, R. Saltarelli, O. Jeníček, J. Wanner and A. Tilche, “ Phosphate uptake under anoxic conditions and fixed-film nitrification in nutrient removal activated sludge system,” Water Research, vol. 30, no.7, 1996, pp. 1573-1584.
[68] G. Bortone, R. Saltarelli, V. Alonso, R. Sorm, J. Wanner and A. Tiche,” Biological anoxic phosphorus removal - The DEPHANOX process,” Water Science and Technology, vol. 34, no.1-2, 1996, pp. 119-128.
[69] G. J. F. Vlekke, Y. Comeau and W. K. Oldham, “ Biological phosphate removal from wastewater with oxygen or nitrate in sequencing batch reactor,” Environ. Technol. Lett. vol. 9, no. 8, 1998, pp. 791-796.
[70] J. Wanner, J. S. Cech and M. Kos, “ New process design for biological nutrient reoval,” Water Science and Technology, vol. 25, no. 4-5, 1992, pp. 445-448.
[71] S. P. Barker and L. P. Dold, ” Denitrification behavior in biological excess phosphorus removal activated sludge system,” Water Research, vol. 30, no. 4, 1996, pp. 769-780.
[72] T. Kuba, M. C. M. van Loosdrecht, A. F. Brandse and J. J. Heijnen, “ Occurrence of denitrifying phosphorus removing bacteria in modified UCT-type wastewater treatment plants,” Water Research, vol. 31, no.4, 1997, pp. 777-786.
[73] M. Merzouki, J. P. Delgenés, N. Bernet, R. Moletta and M. Benlemlih, “ Polyphosphate-accumulating and denitrifying bacteria isolated from anaerobic-anoxic and anaerobic-aerobic sequencing batch reactors,” Current Microbiology, vol. 38, no. 1, 1999a, pp. 9-17.
[74] M. Merzouki, N. Bernet, J. P. Delgenés, R. Moletta and M. Benlemlih, “ Kinetic behavior of some polyphosphate-accumulating bacteria isolates in the presence of nitrate and oxygen,” Current Microbiology, vol. 38, no. 5, 1999b, pp. 300-308.
[75] Y. Barak and J. Vanrijn, “A typical polyphosphate accumulation by the denitrifying bacterium, Paracocus denitrificans,” Appl. Environ. Microbiol., vol. 66, no. 3, 2000, pp.1209-1212.
[76] W. J. Ng, S. L. Ong and J. Y. Hu, “Denitrifying phosphorus removal by anaerobic/anoxic sequencing batch reactor,” Water Science and Technology, vol. 43, no. 3, 2001, pp. 139-146.
[77] J. Meinhold, E. Arnold and S. Isaacs, “Effect of nitrite on anoxic phosphate uptake in biological phosphorus removal activated sludge,” Water Research, vol. 33, no. 8, 1999, pp. 1871-1883.
[78] J. Ahn, T. Daidou, S. Tsuneda and A. Hirata, “Metabolic behavior of denitrifying phosphate-accumulating organisms under nitrate and nitrite electron acceptor conditions,” Journal of Bioscience and Bioengineering, vol. 92, no. 5, 2001, pp. 442-446.
[79] J. Y. Hu, S. L. Ong, W. J. Ng, F. Lu and X. J. Fan, “A new method for characterizing denitrifying phosphorus removal bacteria by using three different types of electron acceptors,” Water Research, vol. 37, no. 14, 2003, pp. 3463-3471.
[80] A. Terada, T. Yamamoto, K. Hibiya, S. Tsuneda, and A. Hirata, “Enhancement of biofilm formation onto surface-modified hollow-fiber membranes and its application to a membrane-aerated biofilm reactor,” Water Science and Technology, vol. 49, 2004, pp. 263-268.
[81] J. Meinhold, D. M. C. Filipe, T. G. Diagger and S. Isaacs, “Characterization of the denitrifying fraction of phosphate accumulating organisms in biological phosphate removal,” Water Science and Technology, vol. 39, no. 1, 1999, pp. 31-42.
[82] S. J. You and C. F. Ouyang, “Simultaneous wastewater nutrient removal by a novel hybrid bioprocess,” Journal of Environmental Engineering, ASCE, vol. 131, no. 6, 2005, pp. 883-891.
[83] S. Wyffels, S. W. H. van Hulle, P. Boeckx, E. I. P. Volcke, O. van Cleemput, P. A. Vanrolleghem, and W. Verstraete, “Modeling and simulation of oxygen-limited partial nitritation in a membrane-assisted bioreactor (MBR),” Biotechnology and Bioengineering, vol. 86, no. 5, 2004a, pp. 531-542.
[84] S. Wyffels, P. Boeckx, K. Pynaert, D. Zhang, O. van Cleemput, G. Chen and W. Verstraete, “Nitrogen removal from sludge reject water by a two-stage oxygen-limited autotrophic nitrification denitrification process,” Water Science and Technology, vol. 49, no. 5-6, 2004b, pp. 57-64.
[85] I. K. Yoo, K. J. Lim, W. S. Lee, D. J. Kim, and G. C. Cha, “Study on Operational Factors in a Nitrite-accumulating Submerged Membrane Bioreactor,” Journal of Microbiology and Biotechnology, vol. 16, no. 3, 2006, pp. 469-474.
[86] 陳雯怡,活性污泥銨氧化基因多樣性之研究,碩士論文,私立中原大學土木工程學,中壢,2005。
[87] H. M. Nicolaisen and N. B. Ramsing, “Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria,” Journal of Microbiological Methods, vol. 50, 2002, pp. 189-203.
[88] 游濬樺,「多功能DNA分析系統」,BioRad,2003。
[89] T. A. Brown, Gene cloning : an introduction, London, New York : Chapman and Hall, University and Professional Division, 1990.
[90] H. Saeki and K. Furuhashi, “Cloning and Characterization of A Nocardia coralline B-276 Gene Cluster Encoding Alkene Monooxygenase,” Journal of Fermentation and Bioengineering, vol. 78, 1994, pp. 399-406.
[91] M.B. Pescod and J.V. Nair, “Biological Disc Filtration for Tropical Waste Treatment,” Water Research, vol. 6, 1972, pp. 1509-1523.
[92] 周文祥,污水污泥同槽併同處理(WSCTU)之實驗研究,碩士論文,國立中央大學土木研究所,中壢,1990。
[93] E. Eisenstadt, C. C. Bruce, B. J. Brown, “Gene Mutation” in Gerhardt (ed), Methods for general and Molecular Bacteriology, Washington, D.C. : American Society for Microbiology, 1994, p. 313.
[94] 彭明琛,養殖環境中銨氧化菌之研究,碩士論文,國立中山大學海洋資源研究所,高雄,2002。
[95] A. G. Best, G. J. Hatton, A. J. Rachwal and B. Hurley, “Biological Phosphorus and Nitrogen Removal at an Experimental Full Scale Plant in the U. K.,” Proceedings, IAWPRC Post-Conference Seminar, Enhanced Biological Phosphorus Removal from Wastewater, vol. 1, Anjou-Recherche, 75389 Paris Cedex 08, France, 1984, pp. 270-289.
[96] G. A. Ekama and G. v. R. Marais, “Biological Nitrogen Removal,” in Theory, Design and Operation of Nutrient Removal Activated Sludge Process, Water Research Commission, Published by the Water Research Commission, Pretoria, 1984.
[97] K. Vrede, M. Heldal, S. Norland and G. Bratbak, “Elemental Composition (C, N, P) and Cell Volume of Exponentially Growing and Nutrient-Limited Bacterioplankton,” Applied and Environmental Microbiology, vol. 68, no. 6, 2002, pp. 2965-2971.
[98] C. Antileo, M. Roeckel, J. Lindemann and U. Wiesmann, “Operating Parameters for High Nitrite Accumulation during Nitrification in a Rotating Biological Nitrifying Contactor,” Water Environment Research, vol. 79, no. 9, 2007, pp. 1006-1014.
[99] A. Pano and J. E. Middlebrooks, “Kinetics of Carbon and Ammonia Nitrogen Removal in RBCs,” Journal Water Pollution Control Federation, vol. 55, 1983, p.956.
[100] G. E. Miller and G. S. Libey, “Evaluation of Three Biological Filters Suitable for Aquaculture Applications,” J. World Maricult. Soc. vol. 16, 1985, pp. 158-168.
[101] C. Easter, “Water Chemistry Characterization and Component Performance of a Recirculating Aquaculture System Producing Hybrid Striped Bass,” Master’s Thesis, Virginia Polytechnic Institute and State University, 1992.
[102] L. B. Brain, “Performance and Operation of A Rotating Biological Contactor in A Tilapia Recirculating Aquaculture System,” Aquacultural Engineering, vol. 34, 2006, pp. 261-274.
[103] F. von Wintzingerode, B. Selent, W. Hegemann and U. B. Gobel, “Phylogenetic Analysis of an Anaerobic, Trichlorobenzene-Transforming Microbial Consortium,” Applied and Environmental Microbiology, vol. 65, no. 1, 1999, pp. 283–286.
[104] J. J. Godon, E. Zumstein, P. Dabert, F. Habouzit and R. Moletta, ”Molecular Microbial Diversity of an Anaerobic Digestor as Determined by Small-Subunit rDNA Sequence Analysis,” Applied and Environmental Microbiology, vol. 63, no. 7, 1997, pp. 2802–2813.
[105] G. R. Crocetti, P. Hugenholtz, P. L. Bond, A. Schuler, J. Keller, D. Jenkins and L. L. Blackall, “Identification of Polyphosphate-Accumulating Organisms and Design of 16S rRNA-Directed Probes for Their Detection and Quantitation,” Applied and Environmental Microbiology, vol. 66, no. 3, 2000, pp. 1175–1182.
[106] R. Martin, H. G. Heilig, E. G. Zoetendal, E. Jimenez, L. Fernandez, H. Smidt and J. M. Rodriguez, “Cultivation-independent assessment of the bacterial diversity of breast milk among healthy women,” Res. Microbiol. vol. 158, no. 1, 2007, pp. 31-37.
[107] O. Nercessian, E. Noyes, M. G. Kalyuzhnaya, M. E. Lidstrom, and L. Chistoserdova, “Bacterial populations active in metabolism of C1 compounds in the sediment of Lake Washington, a freshwater lake,” Applied and Environmental Microbiology, vol. 71, no. 11, 2005, pp. 6885–6899.
[108] 雒怀庆,胡勇有,「厌氧氨氧化污泥中效应菌的分子生物学研究」,微生物学报,第45卷,第3期,2005,第335-338頁。
[109] G. Carvalho, P. C. Lemos, A. Oehmen, and M. A. M. Reis, “Denitrifying Phosphorus Removal: Linking the Process Performance with the Microbial Community Structure,” Water Research, vol. 41, no. 19, 2007, pp. 4383-4396.
[110] S. J. You and W. Y. Chen, “Ammonia Oxidizing Bacteria in a Nitrite-accumulating Membrane Bioreactor,” International Biodeterioration and Biodegradation, vol.62, no. 3, 2008, pp. 244-249.
[111] J. H. Shin, B. I. Sang, Y. C. Chung and Y. K. Choung, “The Removal of Nitrogen Using an Autotrophic Hybrid Hollow-fiber Membrane Biofilm Reactor,” Desalination, vol. 183, no. 1-3, 2005, pp. 447-454.
[112] M. Fabbricino and L. Petta, “Drinking Water Denitrification in Membrane Bioreactor/Membrane Contactor Systems,” Desalination, vol. 210, no. 1-3, 2007, pp. 163-174.
[113] K. Bernat, and I. Wojnowska-Baryla, “Carbon Source in Aerobic Denitrification,” Biochemical Engineering Journal, vol. 36, no. 2, 2007, pp. 116-122.
[114] G. Carvalho, P. C. Lemos, A. Oehmen, and M. A. M. Reis, “Denitrifying Phosphorus Removal: Linking the Process Performance with the Microbial Community Structure,” Water Research, vol. 41, no. 19, 2007, pp. 4383-4396.
[115] V. Parco, T. G. Du, M. Wentzel, and G. Ekama, “Biological Nutrient Removal in Membrane Bioreactors: Denitrification and Phosphorus Removal Kinetic,” Water Science and Technology, vol. 56, no. 6, 2007, pp. 125-134.
[116] T. Saito, D.Brdjanovic, and M. C. M. van Loosdrecht, “Effect of Nitrite on Phosphate Uptake by Phosphate Accumulating Oganisms,” Water Research, vol. 38, no. 17, 2004, pp. 3760-3768.
[117] B. Vanparys, K. Heylen, L. Lebbe and V. P. De, “Pedobacter Caenisp. nov., a Novel Species Isolated from a Nitrifying Inoculum,” International Journal of Systematic and Evolutionary Microbiology, vol. 55 (Pt 3), 2005, pp. 1315-1318.
[118] Y. Shinoda, Y. Sakai, H. Uenishi, Y. Uchihashi, A. Hiraishi, H. Yukawa, H. Yurimoto and N. Kato, “Aerobic and Anaerobic Toluene Degradation by a Newly Isolated Denitrifying Bacterium, Thauera sp. Strain DNT-1,” Applied and Environmental Microbiology, vol. 70, no. 3, 2004, pp. 1385-1392.
[119] T. R. Thomsen, Y. Kong and P. H. Nielsen, “Ecophysiology of Abundant Denitrifying Bacteria in Activated Sludge,” FEMS Microbiology Ecology, vol. 60, no. 3, pp. 370-382.
[120] R. Schulze, S. Spring, R. Amann, I. Huber, W. Ludwig, K. H. Schleifer and P. Kämpfer, “Genotypic Diversity of Acidovorax Strains Isolated from Acivated Sludge and Description of Acidovorax Defluvii sp. nov.,” Systematic and Applied Microbiology, vol. 22, no. 2, 1999, pp. 205-214.
論文全文使用權限:不同意授權