現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:以串聯式質譜分析方法研發乾濾紙血片乳酸和丙酮酸以及尿液胺基多醣雙醣之臨床應用 [以論文名稱查詢館藏系統]
論文英文名稱:Development and Clinical Application of Tandem Mass Methods for Lactate and Pyruvate Quantifications in Filter-Paper Dried Blood Spot and Urinary Glycosaminoglycan Identifications [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:工程科技研究所
畢業學年度:101
出版年度:102
中文姓名:莊志光
英文姓名:Chih-Kuang Chuang
研究生學號:98679022
學位類別:博士
語文別:英文
口試日期:2013-05-30
論文頁數:60
指導教授中文名:劉宣良
指導教授英文名:Hsuan-Liang Liu
口試委員中文名:黃志宏;林忻怡;李勝祥;劉信孚
口試委員英文名:Chih-Hung Huang;LIN HSIN-YI;Sheng-Hsiang Li;Hsin-Fu Liu
中文關鍵詞:轉譯醫學液相層析串聯式質譜分析乾濾紙血片乳酸丙酮酸乳酸性酸中毒黏多醣症胺基多醣溶小體酵素甲醇水解硫酸皮膚素硫酸乙醯肝素
英文關鍵詞:liquid chromatography-tandem mass spectrometrydried blood spotslactatepyruvatelactic academiaglycosaminoglycanmucopolysaccharidoses
論文中文摘要:現代醫學臨床實驗診斷強調低污染、快速、準確、低侵襲性及少量檢體之功能需求,質譜分析完全符合以上條件,是二十一世紀分析技術發展的主流。應用質譜分析設備之高敏感度、高特異性、高通運量、分析速度快、以及具備有多元應用之特質,讓我們可以突破傳統分析設備所無法全面施展的困境,充分提昇分析檢測之深度和廣度。質譜分析技術可以偵測到人體體液中微量的物質,包括荷爾蒙、藥物、代謝物、營養成分、以及一些微小物質,是作為轉譯醫學臨床診斷用途之最佳利器。利用串聯式質譜乾濾紙血片乳酸和丙酮酸定量檢測作為嬰幼兒乳酸性酸中毒之新診斷指標以及利用串聯式質譜黏多醣症分型檢測是兩個成功的範例,係屬創新醫療科技,極具臨床診斷價值,值得推展。本論文將分兩個單元就串聯式質譜分析方法的創新性、實用性、與臨床應用價值分別敘述。

乳酸血症是罹患嚴重小兒疾病最常見之合併症,病人常因為細胞間氧化反應的退化,引發形成一些不可逆的病徵。血液乳酸和丙酮酸的定量分析有助於疾病的診斷以及後續的治療追蹤。傳統酵素學檢測方法需要大量血液檢體,且容易受到血液中干擾物質的影響出現檢測結果的誤差,造成判讀的錯誤。研發串聯式質譜乾濾紙血片乳酸和丙酮酸定量檢測方法可以填補傳統方法的不足與可能發生的誤差結果。乾濾紙血片檢體的來源,包括580位足月新生兒、120位早產兒(懷孕週數介於24-36週)、以及65位懷疑併發有乳酸血症之病人;所有的檢體都取得家屬簽名之書面同意函。本方法極具高的準確度,乳酸和丙酮酸之within-run與between-run分析分別為1.9%和3.9%,以及5.7%和7.3% (n=20);根據內標準品測得之線性分析結果相當理想,線性r值分別為0.9986和0.9973;另外,串聯式質譜分析方法與傳統酵素學檢測方法之迴歸分析(r2)說明兩種方法所測得的結果具備有高的一致性與接受度,乳酸和丙酮酸r2分別為0.9405和0.9447。本方法同時確定乳酸和丙酮酸在乾濾紙血片中高的穩定性。新研發串聯式質譜乾濾紙血片乳酸和丙酮酸定量檢測方法具備有高的敏感度、特異性、和可再現性,以及低血量檢體需求,尤其適用在小兒科之臨床診斷用途。

胺基多醣是一種結合有負電荷異質型黏多醣和少量蛋白質結構之大分子化合物,它的代謝需要仰賴多種特定之溶?小體酵素以逐步分解的方式進行。當缺乏某特定溶?小體酵素活性,胺基多醣的代謝會被阻斷,導致大量屯積在細胞、組織、和器官中,引發不可逆性的病變,例如黏多醣症。目前,黏多醣症的診斷主要以尿液二次元電泳法作為分型診斷的憑據標準;然而二次元電泳法的實驗步驟繁複、冗長,而且結果的判讀會因人為主觀意識或偏差,徒增診斷的不易性和不可靠性。研發尿液串聯式質譜定量檢測硫酸皮膚素(DS)和硫酸乙醯肝素(HS)方法,可以決定相關黏多醣症之型別以為診斷之憑據指標。本研究共計收集56支尿液檢體分別取自4位黏多醣症第一型病人、10位第二型、5位第三型、5位第六型、以及32位正常人。尿液檢體首先沉澱氨基多醣後再以鹽酸甲醇水解,使形成糖醛酸-氨基已糖結合帶有甲氧官能基之二聚物;此衍生物質可在液相層析串聯式質譜分析的條件下進行定量分析、鑑定等工作。正常人尿液中只有微量硫酸皮膚素和硫酸乙醯肝素的存在,而黏多醣症各型(I、II、III、VI型)之尿液其硫酸皮膚素或硫酸乙醯肝素的量均出現顯著的增加。黏多醣症各型在持續接受酵素替代療法治療後,黏多醣第一型治療效果最佳,硫酸皮膚素量和硫酸乙醯肝素的下降幅度最顯著。串聯式質譜尿液硫酸皮膚素和硫酸乙醯肝素定量檢測可以取代傳統黏多醣症之檢查方法,具備有高敏感度、高特異性、方便操作、以及高準確度等特質,並且適用於一般實驗室,提供黏多醣症正確分型診斷與後續治療追蹤之臨床服務。
論文英文摘要:Current methods of clinical laboratory diagnosis accentuate the requirements in low radioactive contamination, automation, high-speed, high accuracy, less invasive sampling, and small amount of sample collection. Mass spectrometry analysis can completely fulfill these requirements and has become the mainstream of analytic technology evolution in the twenty-first century. The analytic properties of mass spectrometry, such as high sensitivity, high specificity, high throughput, easy performance and multiple applications, are extraordinary and can be used for quantitative analysis of small molecules in physiological fluids of human, including hormones, drugs, toxins, metabolites, and nutrient components. Mass spectrometry is thus a powerful tool for clinically diagnostic purpose in translational medicine. Two novel examples, “A Method for Lactate and Pyruvate Determination in Filter-Paper Dried Blood Spots” and “The Tandem Mass Study of Mucopolysaccharidoses and Its Clinical Application”, will be presented in this doctoral dissertation separately in details, particularly focusing on method innovation, performance, result interpretation, diagnostic value, and clinical applications.

Lactic acidemia is commonly associated with severe diseases in pediatric patients. Quantification of blood lactate and pyruvate is important for the diagnosis and clinical management. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method using dried blood spots (DBS) was developed and could be used for simultaneous quantification of blood lactate and pyruvate. Lactate and pyruvate were extracted from DBS obtained from 580 full-term, 120 pre-term infants (gestations ranging from 24 to 36 weeks), and 76 patients with suspected lactic acidemia. An API-2000 LC-MS/MS system with multiple reaction monitoring (MRM) mode was applied. The within-run and between-run precisions (CV %) and the linearity of lactate and pyruvate based on the IS were excellent. The r2 of linear regression between both methods was good, and the agreement between these methods was consistent and acceptable. The stability of lactate and pyruvate on DBS was also confirmed. The LC-MS/MS method is a specific, sensitive, and reproducible for blood lactate and pyruvate measurements. The use of DBS in this method makes it particularly attractive for pediatric patients.

The glycosaminoglycan (GAG) stepwise degradation requires a numbers of lysosomal enzymes. While one or more specific enzyme activities are deficient, the GAG catabolism is block and results in an irreversible mucopolysaccharidosis (MPS). Conventionally, two-dimensional electrophoresis of urinary GAG is the most common method used for MPS phenotype determination; however, time-consuming and ambiguous interpretation adds to the diagnosis more difficult. Identification of acid MPS by LC-MS/MS method of predominant disaccharide component of GAGs (dermatan sulfate, DS; heparin sulfate, HS) after methanolysis is validated and applicable for MPS classification. A total of 56 urine samples were collected and analyzed including 4 MPS I patients, 10 MPS II, 5 MPS III, 5 MPS VI, and 32 normal controls. Urinary GAG was first precipitated followed by a treatment of 3N HCl methanol. An AB 4000 Q TRAP LC-MS/MS system with MRM mode was applied for the protonated species of the methylated disaccharide products. One particular disaccharide for each GAG was selected, in which the parent ion and its assumed daughter ion after collision were m/z 426.1→236.2 for DS (m/z 432?239 for dimmers derived from [2H6] CS and [2H6] DS) and m/z 384.2→161.9 for HS (m/z 390.4?162.5 for the [2H6] HS dimmer). The results were correspondent well when comparing the LC-MS/MS method and 2-D EP method. The quantities of DS and HS were determined, which were varied from one MPS phenotype to the others, and the results can be used to evaluate the severity of MPS subgroups, as well as the amelioration of follow-up therapy. The modified LC–MS/MS method for MPS phenotype determination is validated and applicable for simultaneous quantification of urinary DS and HS. By using this method, a precise MPS diagnosis can be successfully achieved; besides, this method can also be used to evaluate the effectiveness of follow-up ERT.
論文目次:ABSTRACT……………………………………………………… i
ACKNOWLEDGEMENTS……………………………………….. vi
CONTENTS……………………………………………………….. vii
TABLE CONTENTS..................................................................... viii
FIGURE CONTENTS................................................................... ix
Chapter 1. INTRODUCTION..........................................................1
1.1.1 Glucose metabolism and lactic acidosis……………….. 1
1.1.2 The diagnosis of lactic acidosis………………………... 2
1.1.3 The enzymatic analyses of lactate and pyruvate………. 3
1.1.4 A mass spectrometric method for lactate and pyruvate
in filter-paper dried blood spots……………………….. 4
1.2.1 The Causes of Mucopolysaccharidoses............................6
1.2.2 Clinical Manifestations and birth Incidence of MPS.........8
1.2.3 Laboratory diagnosis, the quantitative DMB method of
MPS..............................................................................9
1.2.4 GAG 2-D EP for MPS phenotype determination ..............10
1.2.5 The Disaccharide Unit of GAG.......................................13
Chapter 2. MATERIALS and METHODS………………………… 14
2.1.1 Standards and Reagents………………………………... 14
2.1.2 Blood sample collection and preparation………………. 14
2.1.3 Sample preparation…………………………………….. 15
2.1.4 LC-MS/MS analysis…………………………………… 16
2.1.5 Lactate and pyruvate enzymatic assays………………... 20
2.2.1 Principle of LC-MS/MS method for GAG disaccharide
components....................................................................21
2.2.2 Internal standards preparations........................................23
2.2.3 GAG precipitation and methanolysis ...............................24
2.2.4 Experimental approach…………………………..............24
2.2.4.1 Isolation of GAGs from urine..........................................24
2.2.4.2 Protocol of internal standard preparations ........................25
viii
2.2.4.3 Calibration and sample preparations................................25
2.2.4.4 Experimental parameters of LC-MS/MS analysis………...26
Chapter 3. RESULT……………………………………………….. 28
3.1.1 The LC-MS/MS detection of lactate and pyruvate……. 28
3.1.2 Calibrations……………………………………………. 29
3.1.3 Precision, recovery and linearity………………………. 30
3.1.4 Regression analysis between LC-MS/MS method and
enzymatic assay………………………………………... 31
3.1.5 Lactate and pyruvate concentrations, reference values
and lactate/pyruvate ratio determinations……………… 33
3.1.6 Stability of DBS Sample……………………………….. 35
3.2.1 Overview of quantifications of DS, HS, and CS in
normal control and different MPS phenotype patients.......37
3.2.2 The MRM mass spectrum of normal control and
different MPS phenotypes...............................................38
3.2.3 The averaged concentrations of DS and HS in urines of
different MPS phenotypes and normal control .................42
Chapter 4. DISCUSSION AND CONCLUSION………………….. 46
4.1 Lactate and pyruvate determination in filter-paper dried
blood spots……………………………………….….…….46
4.2 A modified LC-MS/MS method for MPS phenotype
determinations…………………………………..…..……..49
REFERENCES………………………………………………………. 52
ABBREVIATION ............................................................................60
論文參考文獻:1. M.C. Rashkin, C. Bosken, R.P. Baughman. Oxygen delivery in critically ill patients. Relationship to blood lactate and survival. Chest, vol. 87, 1985, pp. 580-4.
2. L.D. Jr Cady, M.H. Weil, A.A. Afifi, S.F. Michaels, V.Y. Liu, H. Shubin. Quantitation of severity of critical illness with special reference to blood lactate. Critical Care Medicine, vol. 1, 1973, pp. 75-80.
3. S.A. Dehparide, M.P. Ward Platt. Association between blood lactate and acid base status and mortality in ventilated babies. Archives of Disease in Childhood. Fetal and Neonatal Edition, vol. 76, 1997, pp. 15-20.
4. R. Cohen, H. Woods. The clinical presentations and classifications of lactic acidosis. In Clinical and Biochemical Aspects of Lactic Acidosis, Blackwell Scientific Publications, Boston, 1976, pp. 56-87.
5. D.E. Freer, and B.E. Ststland. Measurement of amniotic fluid surfactant. Clinical Chemistry, vol. 27, 1981, pp. 1629-1641.
6. L.G. Dobbs. Pulmonary surfactant. Annual Review of Medicine, Vol. 40, 1989, pp. 431-46.
7. B.H. Robinson. Lactic acidemia. Scriver CR Beaudet AL Sly WS Valle D eds. The Metabolic and Molecular Bases of Inherited Disease, McGraw-Hill, New York, 8th ed., 2001.
8. F.G. Debray, G.A. Mitchell, P. Allard, B.H. Robinson, J.A. Hanley, M. Lambert. Diagnostic accuracy of blood lactate-to-pyruvate molar ratio in the differential diagnosis of congenital lactic acidosis. Clinical Chemistry, vol. 53, 2007, pp. 916-21.
9. E.P. Marbach, M.H. Weil. Rapid enzymatic measurement of blood lactate and pyruvate. Use and significance of metaphosphoric acid as a common precipitant. Clinical Chemistry, vol. 13, 1967, pp. 314-25.
10. J.F. Jr Neville, R.L. Gelder. Modified enzymatic methods for the determination of L-(+)-lactic and pyruvic acids in blood. American Journal of Clinical Pathology, vol. 55, 1971, pp.152-158.
11. O’. Lockridge, V. Massey, and P.A. Sullivan. Mechanism of action of the flavoenzyme lactate oxidase. Journal of Biological Chemistry, vol. 247, 1972, pp. 8097-8106.
12. A.M. Marx and A.M. Gressner. Evaluation of the Kodak Ektachem slide assays for iron and lactate. Journal of Clinical Laboratory Analysis, vol. 5, 1991, pp. 86-89.
13. R. Artuch, M.A. Vilaseca, C. Farre, F. Ramon. Determination of lactate, pyruvate, beta-hydroxybutyrate and acetoacetate with a centrifugal analyzer. European Journal of Clinical Chemistry and Clinical Biochemistry, vol. 33, 1995, pp. 529-33.
14. D. Yucel, K. Dalva. Effect of in vitro hemolysis on 25 common biochemical tests. Clinical Chemistry, vol. 38, 1992, pp. 575-7.
15. C.K. Chuang, T.J. Wang, C.Y. Yeung, W.S. Hsieh, D.S. Lin, S.C. Ho, S.P. Lin. Interference and blood sample preparation for a pyruvate enzymatic assay. Clinical Biochemistry, vol. 39, 2006, pp. 74-77.
16. P. Chariot, R. Ratiney, M. Ammi-Said, R. Herigault, S. Adnot, R. Gherardi. Optimal handling of blood samples for routine measurement of lactate and pyruvate. Archives of Pathology & Laboratory Medicine, vol. 118, 1994, pp. 695-7.
17. D.B. Sacks. Carbohydrates. in: Burtis CA, and Ashwood ER, ed. Tietz Textbook of Clinical Chemistry, W.B. Saunders, Philadelphia, 1999, pp. 788-790.
18. J.M. Burrin, R. Worth, S. Law, and K.G. Alberti. Simple filter paper method for home monitoring of blood glucose, lactate, and 3-hydroxybutyrate. Annals of Clinical Biochemistry, vol. 18, 1981, pp. 243-7.
19. H.R. Yoon. Two step derivatization for the analyses of organic, amino acids and glycines on filter paper plasma by GC-MS/SIM. Archives of Pharmacal Research, vol. 30, 2007, pp. 387-95.
20. G. La Marca, S. Malvagia, E. Pasquini, M. Innocenti, M.A. Donati, E. Zammarchi. Rapid 2nd-tier test for measurement of 3-OH-propionic and methylmalonic acids on dried blood spots: reducing the false-positive rate for propionylcarnitine during expanded newborn screening by liquid chromatography-tandem mass spectrometry. Clinical Chemistry, vol. 53, 2007, pp. 1364-9.
21. W. McKinnon, C. Pentecost, G.A. Lord, L.G. Forni, J.M. Peron, P.J. Hilton. Elevation of anions in exercise-induced acidosis: a study by ion-exchange chromatography/mass spectrometry. Biomedical Chromatography, vol. 22, 2008, pp. 301-5.
22. W. McKinnon, G.A. Lord, L.G. Forni, J.M. Peron, P.J. Hilton. A rapid LC-MS method for determination of plasma anion profiles of acidotic patients. Journal of Chromatography B, vol. 833, 2006, pp.179–185.
23. E.F. Neufeld, J. Muenzer: The mucopolysaccharidoses. In The Metabolic and Molecular Bases of Inherited Disease, Eighth edition. Edited by CR Scriver, AL Beaudet, D Valle, et al. New York, McGraw-Hill Book Company, 2001, pp. 3421-3452.
24. D.A. Applegarth, J.E. Dimmick, J.G. Hall. Organelle Diseases: Clinical features, diagnosis, pathogenesis and management, Chapman & Hall Medical. 1997: pp. 45-97.
25. G.T.N. Besley and J.E. Wraith. Lysosomal Disorders. Current Pediatric, vol. 7, 1997, pp. 128-34.
26. J.E. Wraith. Mucopolysaccharidoses. Current Pediatric, vol. 6, 1996, pp. 74-79.
27. H.Y. Lin, S.P. Lin, C.K. Chuang, D.M. Niu, M.R. Chen, F.J. Tsai, M.C. Chao, P.C. Chiu, S.J. Lin, L.P. Tsai, W.L. Hwu, J.L. Lin. Incidence of the mucopolysaccharidoses in Taiwan, 1984-2004. American Journal of Medical Genetics Part A, vol. 149A, no. 5, 2009, pp. 960-964.
28. C.K. Chuang, S.P. Lin, and S.F. Chung. Diagnostic screening for mucopolysaccharidoses by the dimethylmethylene blue method and two dimensional electrophoresis. Chinese Medical Journal (Taipei), vol. 64, 2001, pp. 15-22.
29. J.J. Hopwood, and J.R. Harrison. High-resolution electrophoresis of urinary glycosaminoglycans: an improved screening test for the mucopolysaccharidoses. Analytical Biochemistry, vol. 119, 1982, pp. 120-127.
30. P.P. Dembure, R.A. Roesel. Screening for mucopolysaccharidoses by analysis of urinary glycosaminoglycans. In: Hommes FA. Techniques in Diagnostic Human Biochemical Genetics – A Laboratory Manual. 1991: pp. 77-86.
31. C.K. Chuang, S.P. Lin, S.J. Lee, and T.J. Wang. MPS Screening Methods, the Berry Spot and Acid Turbidity Tests, Caused High Incidence of False-Negative Result in Sanfilippo and Morquio Syndromes. Journal of Clinical Laboratory Analysis, vol. 16, no. 5, 2002, pp. 253-258.
32. J. Mossman and A.D. Patrick. Prenatal diagnosis of mucopolysaccharidosis by two-dimensional electrophoresis of amniotic acid fluid glycosaminoglycans. Prenatal Diagnosis, vol. 2, no. 3, 1982, pp. 169-176.
33. W.J. Kleijer, J.G. Huijmans, W. Blom, D. Gorska, J. Kubaalska, M. Walasek, and J. Zaremba. Prenatal diagnosis of Sanfillppo disease type B. Human Genetics, vol. 66, no. 4, 1984, pp. 287-8.
34. H.K. Berry and J. Spinanger. A paper spot test useful in study of Hurler‘s Syndrome. Journal of Laboratory and Clinical Medicine, vol. 55, no. 1, 1960, pp. 136-139.
35. H.K. Berry. Screening for mucopolysaccharide disorders with the Berry spot test. Clinical Biochemistry, vol. 20, no. 5, 1987, pp. 365-371.
36. K.C. Huang, K. Sukegawa, and T. Orii. Screening test for urinary glycosaminoglycans and differentiation of various mucopolysaccharidoses. Clinica Chimica Acta, vol. 151, no. 2, 1985, pp. 147-156.
37. I. Rezvani, P.J. Collipp, and A.M. DiGeoge. Evaluation of screening tests for urinary mucopolysaccharides. Pediatrics, vol. 52, no.1, 1973, pp. 64-68.
38. P.C. Champe and R.A. Harvey. Glycosaminoglycans in Biochemistry, Lippincott’s Illustrated Reviews, 2nd edition, J.B. Lippincott Company, 1994.
39. J.F. O’brien, T. Gerritsen, and A.C. Helmuth. Identification of acid mucopolysaccharides by gas chromatographic analysis of component sugars after chemical depolymerization. Analytical Biochemistry, vol. 56, 1973, pp. 465-479.
40. J. Lehrfeld. Differential gas-liquid chromatography method for determination of uronic acids in carbohydrate mixtures. Analytical Biochemistry, vol. 115, 1981, pp. 410-418.
41. G.C. Dierckxsens, L.D. Meyer, and G.J. Tonino. Simultaneous determination of uronic acids, hexosamines, and galactose of glycosaminoglycans by gas-liquid chromatography. Analytical Biochemistry, vol. 130, 1983, pp. 120-27.
42. M.F. Chaplin. A rapid and sensitive method for the analysis of carbohydrate components in glycoproteins using gas-liquid chromatography. Analytical Biochemistry, vol. 123, 1982, pp. 336-341.
43. L. Vadas, H.S. Prihar, B.K.Pugashetti, and D.S. Feingold. A gas chromatography method for the quantitative determination of hexuronic acids in alginic acid. Analytical Biochemistry, vol. 114, 1981, pp. 294-298.
44. C. Auray-Blais, P. Bherer, R. Gagnon, S.P. Young, H.H. Zhang, Y. An, et al. Efficient analysis of urinary glycosaminoglycans by LC-MS/MS in mucopolysaccharidoses type I, II and VI. Molecular Genetics and Metabolism, vol. 102, 2011, pp. 49–56.
45. H. Zhang, S.P. Young, C. Auray-Blais, P.J. Orchard, J. Tolar, and D.S. Millington. Analysis of Glycosaminoglycans in Cerebrospinal Fluid from Patients with Mucopolysaccharidoses by Isotope-Dilution Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry. Clinical Chemistry, vol. 57, no. 7, 2011, pp. 1005–1012.
46. T.M. Wahlig, C.W. Gatto, S.J. Boros, M.C. Mammel, M.M. Mills, M.K. Georgieff. Metabolic response of preterm infants to variable degree of respiratory illness. Journal of Pediatrics, vol. 124, 1994, pp. 283-288.
47. S. Shah, M. Tracy, and J. Smyth. Postnatal lactate as an early predictor of short-term outcome after intrapartum asphyxia. Journal of Perinatology, vol. 24, 2004, pp. 16-20.
48. M.J. Fitzgerald, M. Goto, T.F. Myers, W.P. Zeller. Early metabolic effects of sepsis in the preterm infant: lactic acidosis and increased glucose requirement. Journal of Pediatrics, vol. 121, 1992, pp. 951-955.
49. NCCLS. Blood Collection on Filter Paper for Newborn Screening Programs; Approved Standard—Fourth Edition. NCCLS document LA4-A4 (ISBN 1-56238-503-8). NCCLS, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898 USA, 2003.
50. D.H. Chace, S.L. Hillman, D.S. Millington, S.G. Kahler, B.W. Adam and H.L. Levy. Rapid diagnosis of homocystinuria and other hypermethioninemias from newborns' blood spots by tandem mass spectrometry. Clinical Chemistry, vol. 42, 1996, pp. 349-355.
51. D.H. Chace, B.W. Adam, S.J. Smith, J.R. Alexander, S.L. Hillman and W.H. Hannon. Validation of Accuracy-based Amino Acid Reference Materials in Dried-Blood Spots by Tandem Mass Spectrometry for Newborn Screening Assays. Clinical Chemistry, vol. 45, 1999, pp. 1269-1277.
52. R. Astles, C.P. Williams, and F. Sedor. Stability of plasma lactate in vitro in the presence of antiglycolytic agents. Clinical Chemistry, vol. 40, 1994, pp. 1327-30.
53. K.L. Ross, T.T Tu, S. Smith, J.J. Dalluge. Profiling of organic acids during fermentation by ultraperformance liquid chromatography-tandem mass spectrometry. Analytical Chemistry, vol. 79, 2007, pp. 4840-4844.
54. V. Wiley, K. Carpenter, B. Wilcken. Newborn screening with tandem mass spectrometry: 12 months' experience in NSW Australia. Acta Paediatrica. Supplement, vol. 88, no. 432, 1999, pp. 48-51.
55. R.J. Pollitt. Tandem mass spectrometry screening: proving effectiveness. Acta Paediatrica. Supplement, vol. 88, no. 432, 1999, pp. 40-4.
56. D.H. Chace, T.A. Kalas. A biochemical perspective on the use of tandem mass spectrometry for newborn screening and clinical testing. Clinical Biochemistry, 38(4), 2005, pp. 296-309. Review. Erratum in: Clinical Biochemistry, vol. 38, no. 5, 2005; pp. 495.
57. D.H. Chace, T.A. Kalas, E.W. Naylor. Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns. Clinical Chemistry, vol. 49, no. 11, 2003, pp. 1797-817.
58. J.E. Wraith, L.A. Clarke, M. Beck, E.H. Kolodny, G.M. Pastores, J. Muenzer, D.M. Rapoport, K.I. Berger, S.J. Swiedler, E.D. Kakkis, et al. Enzyme replacement therapy for mucopolysaccharidosis I: A randomized, double-blinded, placebo-controlled, multinational study of recombinant human α-L-iduronidase (laronidase). Journal of Pediatrics, vol. 144, 2004, pp. 581–588.
59. J.E. Wraith. The first 5 years of clinical experience with laronidase enzyme replacement therapy for mucopolysaccharidosis I. Expert Opinion on Pharmacotherapy, vol. 6, 2005, pp. 489–506.
60. H.Y. Lin, S.P. Lin, C.K. Chuang, M.R. Chen, B.F. Chen, J.E. Wraith. Mucopolysaccharidosis I under enzyme replacement therapy with laronidase—A mortality case with autopsy report. Journal of Inherited Metabolic Disease, vol. 28, 2005, pp. 1146–1148.
61. J.E. Wraith, M. Beck, R. Lane, A. van der Ploeg, E. Shapiro, Y. Xue, E.D. Kakkis, N. Guffon. Enzyme replacement therapy in patients who have mucopolysaccharidosis I and are younger than 5 years: Results of a multinational study of recombinant human α-L-iduronidase (laronidase). Pediatrics, vol. 120, 2007, pp. 37–46.
62. L.A. Clarke, J.E. Wraith, M. Beck, E.H. Kolodny, G.M. Pastores, J. Muenzer, D.M. Rapoport, K.I. Berger, M. Sidman, E.D. Kakkis, et al. Long-term efficacy and safety of laronidase in the treatment of mucopolysaccharidosis I. Pediatrics, vol. 123, 2009, pp.229–240.
63. R. Giugliani, M.V. Mu?oz-Rojas, A.M. Martins, E.R. Valadares, J.T. Clarke, J.E. G?es, E.D. Kakkis, M.A. Worden, M. Sidman, G.F. Cox. A dose-optimization trial of laronidase (Aldurazyme?) in patients with mucopolysaccharidosis I. Molecular Genetics and Metabolism, vol. 96, 2009, pp. 13–19.
64. E.D. Kakkis, J. Muenzer, G.E. Tiller, L. Waber, J. Belmont, M. Passage, B. Izykowski, P J. hillips, R. Doroshow, I. Walot, et al. Enzyme Replacement Therapy in Mucopolysaccharidosis I. New England Journal of Medicine, vol. 344, 2001, pp. 182–188.
65. M. Sifuentes, R. Doroshow, R. Hoft., G. Mason, I. Walot, M. Diament, S. Okazaki, K. Huff, G.F. Cox, S.J. Swiedler, et al. A follow up study of MPS I patients treated with laronidase enzyme replacement therapy for 6 years. Molecular Genetics and Metabolism, vol. 90, 2007, pp. 171–180.
66. M.H. de Ru, L. van der Tol, N. van Vlies, B.W. Bigger, C.E. Hollak, L. Ijlst, W. Kulik, H. van Lenthe, M.A. Saif, T. Wagemans, W.M. van der Wal, R.J. Wanders, F.A. Wijburg. Plasma and urinary levels of dermatan sulfate and heparin sulfate derived disaccharides after long-term enzyme replacement therapy (ERT) in MPS I: correlation with the timing of ERT and with total urinary excretion of glycosaminoglycans. Journal of Inherited Metabolic Disease, vol. 36, no. 2, 2013, pp. 247-55.
67. C. Peters, M. Balthazor, E.G. Shapiro, R.J. King, C. Kollman, J.D. Hegland, J. Henslee-Downey, et al. Outcome of unrelated donor bone marrow transplantation in 40 children with Hurler syndrome. Blood, vol. 87, 1996, pp. 4894-4902.
68. J. Muenzer, J.E. Wraith, L.A. Clarke, International Consensus Panel on Management and Treatment of Mucopolysaccharidosis I: Mucopolysaccharidosis I: management and treatment guidelines. Pediatrics, vol. 123, 2009, pp. 19-29.
69. L.A. Martell, R.L. Cunico, J. Ohh, W. Fulkerson, R. Furneaux, E.D. Foehr. Validation of an LC-MS/MS assay for detecting relevant disaccharides from keratin sulfate as a biomarker for Morquio A syndrome. Bioanalysis, vol. 3, no. 16, 2011, pp. 1855-1866.
論文全文使用權限:同意授權於2013-06-20起公開