現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:不同品種乳酸菌對於預防沙門氏桿菌脂多醣體所造成上皮細胞屏障功能損害之體外試驗模型研究 [以論文名稱查詢館藏系統]
論文英文名稱:In-vitro Prevention of Salmonella Lipopolysaccharide-induced Damages in Epithelial Barrier Function by Various Lactobacillus Strains [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:工程科技研究所
畢業學年度:101
出版年度:102
中文姓名:楊俊仁
英文姓名:Chun-Yan Yeung
研究生學號:99679019
學位類別:博士
語文別:英文
口試日期:2013-06-28
論文頁數:71
指導教授中文名:劉宣良
指導教授英文名:Hsuan-Liang Liu
口試委員中文名:黃志宏;林忻怡;李勝祥;劉信孚
中文關鍵詞:乳酸菌沙門氏桿菌脂多醣體密合區Caco-2細胞
英文關鍵詞:LactobacillusSalmonellalipopolysaccharidetight junctionCaco-2 cells
論文中文摘要:研究顯示乳酸菌對沙門氏桿菌感染有很好的抗發炎效果,其作用為維持腸道上皮細胞密合區的完整性,在避免細菌的侵入有其重要性。本研究旨在探討在已發炎的腸道上皮細胞上,乳酸菌是否可有效調控腸道上皮細胞密合區蛋白的表現和分佈。使用轉移盤共同培養模型,沙門氏桿菌脂多醣體添加於已極化之Caco-2細胞的上層,周邊血液單核球細胞則共同培養於下層。被脂多醣體刺激活化的Caco-2細胞則與不同品種的乳酸菌共同培養。密合區的完整性可經由測量Caco-2細胞層的電組來判斷。而密合區蛋白(閉鎖小帶ZO-1)的表現及分佈可使用西式墨點法及免疫螢光來確認。不同品種的乳酸菌對於Caco-2細胞層的完整性有不同的調控能力,而脂多醣體被証實可用於破壞腸道上皮細胞的屏障及改變閉鎖小帶(ZO-1)的分佈。我們的數據顯示乳酸菌可以弱化因使用沙門氏桿菌脂多醣體導致的腸道上皮細胞屏障的破壞程度,同樣也顯示乳酸菌的品種與維持密合區完整性和表現有關。我們的研究結果顯示活的益生菌可以改善腸道上皮細胞的屏障,且這可解釋益生菌在臨床上對於活體效益的潛在機制。
論文英文摘要:Lactobacillus shows beneficial anti-inflammatory effects to Salmonella infection. The maintenance of the tight junction (TJ) integrity plays an importance role in avoiding bacterial invasion. Whether Lactobacillus could be used to regulate the TJ protein expression and distribution in inflamed intestinal epithelial cells was determined. Using the transwell co-culture model, Salmonella lipopolysaccharide (LPS) was apically added to polarized Caco-2 cells co-cultured with peripheral blood mononuclear cells in the basolateral compartment. LPS-stimulated Caco-2 cells were incubated with various Lactobacillus strains. TJ integrity was determined by measuring trans-epithelial electrical resistance across Caco-2 monolayer. Expression and localization of TJ proteins (zonula occludens (ZO)-1) were determined by western blot and immunofluorescence microscopy. Various strains of Lactobacillus were responsible for the different modulations of cell layer integrity. LPS was specifically able to disrupt epithelial barrier and change the location of ZO-1. Our data demonstrate that Lactobacillus could attenuate the barrier disruption of intestinal epithelial cells caused by Salmonella LPS administration. We showed that Lactobacillus strains are associated with the maintenance of the tight junction integrity and appearance. In this study we provide insight that live probiotics could improve epithelial barrier properties and this may explain the potential mechanism behind to their beneficial effect in-vivo.
論文目次:中文摘要 i
英文摘要 ii
誌謝 iii
目錄 v
表目錄 viii
圖目錄 ix
Chapter 1 Introduction 1
1.1 Epithelial integrity and tight junction 1
1.1.1 Intestinal epithelium 1
1.1.2 Anatomy of mucosal barriers 2
1.1.2.1 Extracellular components of the barrier. 2
1.1.2.2 Cellular components of the mucosal barrier 3
1.1.3 Barrier function and immunity 4
1.1.4 Tight junctions 6
1.1.4.1 Types of tight junctions. 7
1.1.5 Functions of tight junction 10
1.1.6 Dynamic structure and permeability of tight
junction 11
1.1.7 Assessments of tight junction 12
1.1.8 Tight junctions as targets of infectious agents 13
1.2 Salmonella infection and its impact 13
1.2.1 Enteric infections 13
1.2.2 Salmonella typhimurium 15
1.2.3 Salmonella and tight junction 15
1.2.4 Lipopolysaccharide 17
1.2.4.1 Protection of intestinal occludin tight
junction protein by dietary gangliosides
in lipopolysaccharide-induced acute
inflammation 18
1.2.4.2 The protective effect of enteric glial
cells on intestinal epithelial barrier
function is enhanced by inhibiting
inducible nitric oxide synthase activity
under lipopolysaccharide stimulation. 19
1.2.5 Usage of Antibiotics in Salmonellosis 22
1.2.5.1 Indications of antibiotics. 22
1.2.5.2 Emergence of multi-drugs resistant
Salmonella strains. 22
1.2.5.3 Effect of antibiotic therapy on
Salmonella fecal excretion time 22
1.3 Probiotics 23
1.3.1 History and definition 23
1.3.2 Protective effects of probiotics 24
1.3.3 Clinical use of probiotics 26
1.4 In-vitro inhibitory effects of Lactobacillus 29
1.4.1 Lactobacillus rhamnosus strain GG prevents
enterohemorrhagic Escherichia coli O157:H7-
induced changes in epithelial barrier function 29
1.4.2 Probiotic bacteria induce maturation of
intestinal claudin 3 expression and barrier
function 30
1.4.3 Probiotic bacteria enhance murine and human
intestinal epithelial barrier function (T84
monolayer experiments) 33
1.5 Applications 34
1.6 Hypothesis 38
Chapter 2 Materials and Methods 39
2.1 Bacteria and culture conditions 39
2.2 Cell culture and Caco-2/human blood peripheral
monocyte cells (PBMC) co-culture model 39
2.3 Induction inflammatory response and anti-
inflammation scoring 40
2.4 Electrical resistance measurements 40
2.5 Immunofluorescence microscopy 41
2.6 Western blot 42
2.7 Statistics 42
Chapter 3 Results 43
3.1 Effect of Lactobacillus on Caco-2 monolayer
resistance 43
3.2 Effects of LPS on ZO-1 location and expression 44
3.3 Effects of Lactobacillus on ZO-1 location and
expression exposed to LPS 45
Chapter 4 Discussion 47
4.1 Effects of probiotics on integrity of Caco-2
monolayer 47
4.2 Commensal probiotics 48
4.3 In-vitro prevention of Salmonella LPS-induced
damages by various Lactobacillus strains 48
4.4 Possible mechanisms of action 50
4.4.1 Protective effects on the host against
pathogenic bacteria 50
4.4.2 By producing bacteriostatic or bactericidal
agents 51
4.4.3 By signaling through host cell pathways
involving the phosphorylation of occludin and
the regulation of TJ and cytoskeleton proteins 51
4.4.4 Stabilized cellular tight junctions 52
4.4.5 Induce downregulation of proinflammatory
signals mediated through NFkB 52
4.4.6. Producing an antibacterial activity 53
4.4.7 Immunomodulatory effects 53
4.4.8 Conclusion 57
References 59
論文參考文獻:1.Amasheh, S., Meiri, N., Gitter, A.H., Schoneberg, T., Mankertz, J., Schulzke, J.D. & Fromm, M. (2002) Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J Cell Sci 115(24): 4969–4976.
2.Anderson, R. C., Cookson, A. L., McNabb, W. C., Kelly, W. J. & Roy, N. C. (2010) Lactobacillus plantarum DSM 2648 is a potential probiotic that enhances intestinal barrier function. FEMS Microbiol Lett 309: 184-192.
3.Bai, Y. H., Pak, S. C., Lee, S. H., Bae, C. S., Prosser, C., Stelwagen, K., Lee, J. H. & Park, S. D. (2005) Assessment of a bioactive compound for its potential antiinflammatory property by tight junction permeability. Phytother Res 19: 1009-1012.
4.Barbara, G., Zecchi, L., Barbaro, R., Cremon, C., Bellacosa, L., Marcellini, M., De Giorgio, R., Corinaldesi, R. & Stanghellini, V. (2012) Mucosal permeability and immune activation as potential therapeutic targets of probiotics in irritable bowel syndrome. J Clin Gastroenterol 46 Suppl: S52-55.
5.Bean, N. H., Martin, S. M. and Bradford, H. Jr. (1992) PHLIS: an electronic system for reporting public health data from remote sites. Am J Public Health 83(9):1273–1276.
6.Bertelsen, L. S., Paesold, G., Marcus, S. L., Finlay, B. B., Eckmann, L. & Barrett, K. E. (2004) Modulation of chloride secretory responses and barrier function of intestinal epithelial cells by the Salmonella effector protein SigD. Am J Physiol Cell Physiol 287: C939-948.
7.Bismut, H. & Plas, C. (1991) Role of serine biosynthesis and its utilization in the alternative pathway from glucose to glycogen during the response to insulin in cultured foetal-rat hepatocytes. Biochem J 276 ( Pt 3): 577-582.
8.Boyle, E.C., Brown, N.F. & Finlay, B.B. (2006) Salmonella enterica serovar Typhimurium effectors SopB, SopE, SopE2 and SipA disrupt tight junction structure and function, Cell Microbiol 8:1946–1957.
9.Bradbury, N. A. (2000) Protein kinase-A-mediated secretion of mucin from human colonic epithelial cells. J Cell Physiol 185:408–415.
10.Brenner, F. W., Villar, R. G., Angulo, F. J., Tauxe, R. & Swaminathan, B. (2000) Salmonella nomenclature. J Clin Microbiol 38: 2465-2467.
11.Bruewer, M., Utech, M., Ivanov, A.I., Hopkins, A.M., Parkos, C.A. & Nusrat, A. (2005) Interferon-gamma induces internalization of epithelial tight junction proteins via a macropinocytosis-like process. FASEB J 19: 923–933.
12.Brumell, J. H., Steele-Mortimer, O. & Finlay, B. B. (1999) Bacterial invasion: Force feeding by Salmonella. Curr Biol 9: R277-280.
13.Burkholder, K. M. & Bhunia, A. K. (2009) Salmonella enterica serovar Typhimurium adhesion and cytotoxicity during epithelial cell stress is reduced by Lactobacillus rhamnosus GG. Gut Pathog 1: 14.
14.Casey, P. G., Gardiner, G. E., Casey, G., Bradshaw, B., Lawlor, P. G., Lynch, P. B., Leonard, F. C., Stanton, C., Ross, R. P. et al. (2007) A five-strain probiotic combination reduces pathogen shedding and alleviates disease signs in pigs challenged with Salmonella enterica Serovar Typhimurium. Appl Environ Microbiol 73: 1858-1863.
15.Centers for Disease Control and Prevention (1999) Salmonella surveillance report. Atlanta, Ga.
16.Chao, H. C., Chiu, C. H., Kong, M. S., Chang, L. Y., Huang, Y. C., Lin, T. Y. & Lou, C. C. (2000) Factors associated with intestinal perforation in children's non-typhi Salmonella toxic megacolon. Pediatr Infect Dis J 19: 1158-1162.
17.Chao, Y.N. & Yeung, C.Y. (2003) Effect of antibiotic therapy on Salmonella fecal excretion time. Proceedings of 2003 Annual Meeting of Taiwan Pediatric Association, Taipei, Taiwan.
18.Chin, A.C., Flynn, A.N., Fedwick, J.P. & Buret, A.G. (2006) The role of caspase-3 in lipopolysaccharide-mediated disruption of intestinal epithelial tight junctions. Can J. Physiol Pharmacol 84: 1043–1050.
19.Chiu, C.H., Wu, T.L., Su, L.H., Chu, C., Chia, J.H. & Kuo, A.J. (2002) The emergence in Taiwan of fluoroquinolone resistance in Salmonella enterica serotype choleraesuis. N Engl J Med 346: 413-9.
20.Clayburgh, D. R., Musch, M. W., Leitges, M., Fu, Y. X. & Turner, J. R. (2006) Coordinated epithelial NHE3 inhibition and barrier dysfunction are required for TNF-mediated diarrhea in vivo. J Clin Invest 116: 2682–2694.
21.Coconnier, M. H., Lievin, V., Bernet-Camard, M. F., Hudault, S. & Servin, A. L. (1997) Antibacterial effect of the adhering human Lactobacillus acidophilus strain LB. Antimicrob Agents Chemother 41: 1046-1052.
22.Colegio, O. R., Van Itallie, C., Rahner, C. & Anderson, J. M. (2003) Claudin extracellular domains determine paracellular charge selectivity and resistance but not tight junction fibril architecture. Am J Physiol Cell Physiol 284: C1346–C1354.
23.Corr, S. C., Li, Y., Riedel, C. U., O’Toole, P. W., Hill, C. & Gahan, C. G. M. (2007) Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci USA 104:7617–7621.
24.Crum-Cianflone, N. F. (2008) Salmonellosis and the gastrointestinal tract: more than just peanut butter. Curr Gastroenterol Rep 10: 424-431.
25.Delcenserie, V., Martel, D., Lamoureux, M., Amiot, J., Boutin, Y. & Roy, D. (2008) Immunomodulatory effects of probiotics in the intestinal tract. Curr Issues Mol Biol 10: 37-54.
26.Ding, L., Li, J., Li, Y., Zhu, N. & Liu, F. (2004) Intestinal barrier damage caused by trauma and lipopolysaccharide. World J Gastroenterol 10: 2373–2378.
27.Doron, S., D. R. Snydman, & S. L. Gorbach. (2005) Lactobacillus GG: bacteriology and clinical applications. Gastroenterol Clin N Am 34:483–498.
28.Esvaran, M. & Conway, P. L. (2012) Strain dependent protection conferred by Lactobacillus spp. administered orally with a Salmonella Typhimurium vaccine in a murine challenge model. Vaccine 30: 2654-2661.
29.Fang, H. W., Fang, S. B., Chiang Chiau, J. S., Yeung, C. Y., Chan, W. T., Jiang, C. B., Cheng, M. L. & Lee, H. C. (2010) Inhibitory effects of Lactobacillus casei subsp. rhamnosus on Salmonella lipopolysaccharide-induced inflammation and epithelial barrier dysfunction in a co-culture model using Caco-2/peripheral blood mononuclear cells. J Med Microbiol 59: 573-579.
30.FAO/WHO. (2001) Joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria, Cordoba, Argentina, 1 to 4
http://www.fao.org/es/esn/food/foodandfood_probio_en.stm
31.Fasano, A. (2001) Intestinal zonulin: open sesame! Gut 49: 159-162.
32.Finlay, B. B. & Falkow, S. (1989) Salmonella as an intracellular parasite. Mol Microbiol 3: 1833-1841.
33.Finlay, B.B. & Falkow, S. (1990) Salmonella interactions with polarized human intestinal Caco-2 epithelial cells. J Infect Dis 162: 1096–1106.
34.Floch, M. H., Walker, W. A., Guandalini, S., Hibberd, P., Gorbach, S., Surawicz, C., Sanders, M. E., Garcia-Tsao, G., Quigley, E. M. et al. (2008) Recommendations for probiotic use--2008. J Clin Gastroenterol 42 Suppl 2: S104-108.
35.Freudenberg, M. A., Salomao, R., Sing, A., Mitov, I. & Galanos, C. (1998) Reconciling the concepts of endotoxin sensitization and tolerance. Prog Clin Biol Res 397: 261-268.
36.Galanos, C., Luderitz, O., Freudenberg, M., Brade, L., Schade, U., Rietschel, E. T., Kusumoto, S. & Shiba, T. (1986) Biological activity of synthetic heptaacyl lipid A representing a component of Salmonella minnesota R595 lipid A. Eur J Biochem 160: 55-59.
37.Galanos, C., Luderitz, O., Rietschel, E. T., Westphal, O., Brade, H., Brade, L., Freudenberg, M., Schade, U., Imoto, M. et al. (1985) Synthetic and natural Escherichia coli free lipid A express identical endotoxic activities. Eur J Biochem 148: 1-5.
38.Gorbach, S. L. (2000) Probiotics and gastrointestinal health. Am J Gastroenterol 95:S2–S4.
39.Gorbach, S.L., Chang, T.W. & Goldin, B. (1987) Successful treatment of relapsing Clostridium difficile colitis with Lactobacillus GG. Lancet 2:1519.
40.Gotteland, M., Cruchet, S. & Verbeke, S. (2001) Effect of Lactobacillus ingestion on the gastrointestinal mucosal barrier alterations induced by indomethacin in humans. Aliment Pharmacol Ther 15:11–17.
41.Guandalini, S. (2011) Probiotics for prevention and treatment of diarrhea. J Clin Gastroenterol 45 Suppl: S149-153.
42.Gupta, A., Fontana, J., Crowe, C., Bolstorff, B., Stout, A., Van Duyne, S., Hoekstra, M. P., Whichard, J. M., Barrett, T. J. & Angulo, F. J. (2003) Emergence of multidrug-resistant Salmonella enterica serotype Newport infections resistant to expanded-spectrum cephalosporins in the United States. J Infect Dis 188: 1707-1716.
43.Gupta, P., Andrew, H., Kirschner, B. S. & Guandalini, S. (2000) Is lactobacillus GG helpful in children with Crohn's disease? Results of a preliminary, open-label study. J Pediatr Gastroenterol Nutr 31: 453-457.
44.Han, X., Fink, M. P. & Delude, R. L. (2003) Proinflammatory cytokines cause NO*-dependent and -independent changes in expression and localization of tight junction proteins in intestinal epithelial cells. Shock 19: 229-237.
45.Han, X., Fink, M.P., Yang, R. & Delude, R.L. (2004) Increased iNOS activity is essential for intestinal epithelial tight junction dysfunction in endotoxemic mice. Shock 21:261–70.
46.Heazlewood, C. K., Cook, M.C., Eri, R., Price, G.R., Tauro, S.B., Taupin, D., Thornton, D.J., Png, C.W., Crockford, T.L., Cornall, R.J., Adams, R., Kato, M., Nelms, K.A., Hong, N.A., Florin, T.H., Goodnow, C.C. & McGuckin, M.A. (2008) Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med 5(3):e54.
47.Hidalgo, I. J., Raub, T. J. & Borchardt, R. T. (1989) Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96: 736-749.
48.Holmgren, J., Adamsson, J., Anjuere, F., Clemens, J., Czerkinsky, C., Eriksson, K., Flach, C. F., George-Chandy, A., Harandi, A. M. et al. (2005) Mucosal adjuvants and anti-infection and anti-immunopathology vaccines based on cholera toxin, cholera toxin B subunit and CpG DNA. Immunol Lett 97: 181-188.
49.Huebner, E. S. and Surawicz, C. M. (2006) Probiotics in the prevention and treatment of gastrointestinal infections. Gastroenterol Clin North Am 35:355–365.
50.Imoto, M., Yoshimura H., Sakaguchi S., Kusumoto S., and Shiba T. Total synthesis of Escherichia coli lipid A. Tetrahedron Lett., 26, 1984, pp. 1545–1548.
51.Imoto, M., Yoshimura H., Yamamoto M., Shimamoto T., Kusumoto S., and Shiba T. (1984) Chemical synthesis of phosphorylated tetraacyl disaccharide corresponding to a biosynthetic precursor of lipid A. Tetrahedron Lett., 25, pp. 2667–2670.
52.Isolauri, E., Majamaa, H., Arvola, T., Rantala, I., Virtanen, E. & Arvilommi, H. (1993) Lactobacillus casei strain GG reverses increased intestinal permeability induced by cow milk in suckling rats. Gastroenterology 105(6): 1643–1650.
53.Jack, R. W., Tagg, J. R. & Ray, B. (1995) Bacteriocins of gram-positive bacteria. Microbiol Rev 59:171–200.
54.Jepson, M. A., Schlecht, H. B. & Collares-Buzato, C. B. (2000) Localization of dysfunctional tight junctions in Salmonella enterica serovar typhimurium-infected epithelial layers. Infect Immun 68: 7202-7208.
55.Johnson-Henry, K. C., Donato, K. A., Shen-Tu, G., Gordanpour, M. & Sherman, P. M. (2008) Lactobacillus rhamnosus strain GG prevents enterohemorrhagic Escherichia coli O157:H7-induced changes in epithelial barrier function. Infect Immun 76: 1340-1348.
56.Johnson-Henry, K. C., Mitchell, D. J., Avitzur, Y., Galindo-Mata, E., Jones, N. L. & Sherman, P. M. (2004) Probiotics reduce bacterial colonization and gastric inflammation in H. pylori-infected mice. Dig Dis Sci 49:1095–1102.
57.Johnson-Henry, K. C., Riff, J. D., Gordanpour, M. & Sherman, P. M. (2005) Probiotics in models of gastrointestinal bacterial infections. Nutrafoods 4:29–36.
58.Karczewski, J., Troost, F. J., Konings, I., Dekker, J., Kleerebezem, M., Brummer, R. J. & Wells, J. M. (2010) Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. Am J Physiol Gastrointest Liver Physiol 298: G851-859.
59.Khailova, L., Dvorak, K., Arganbright, K. M., Halpern, M. D., Kinouchi, T., Yajima, M. & Dvorak, B. (2009) Bifidobacterium bifidum improves intestinal integrity in a rat model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 297: G940-949.
60.Klaenhammer, T. R. (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–86
61.Kohler, H., Sakaguchi, T., Hurley, B.P., Kase, B.A., Reinecker, H.C. & McCormick, B.A. (2007) Salmonella enterica serovar Typhimurium regulates intercellular junction proteins and facilitates transepithelial neutrophil and bacterial passage. Am J Physiol Gastrointest Liver Physiol 293: G178–G187
62.Kucharzik, T., Lugering, N., Winde, G., Domschke, W. & Stoll, R. (1997) Colon carcinoma cell lines stimulate monocytes and lamina propria mononuclear cells to produce IL-10. Clin Exp Immunol 110: 296-302.
63.Lee, H. Y., Su, L. H., Tsai, M. H., Kim, S. W., Chang, H. H., Jung, S. I., Park, K. H., Perera, J., Carlos, C. et al. (2009) High rate of reduced susceptibility to ciprofloxacin and ceftriaxone among nontyphoid Salmonella clinical isolates in Asia. Antimicrob Agents Chemother 53: 2696-2699.
64.Lee, Y.K., Puong, K.Y. Ouwehand, A. C. & Salminen, S. (2003) Displacement of bacterial pathogens from mucus and Caco-2 cell surface by lactobacilli. J Med Microbiol 52:925–930.
65.Mack, D.R., Michail, S., Wei, S., McDougall, L. & Hollingsworth, M.A. (1999) Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am J Physiol 276:G941–950.
66.Madsen, K., Cornish, A., Soper, P., McKaigney, C., Jijon, H., Yachimec, C., Doyle, J., Jewell, L. & De Simone, C. (2001) Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology 121: 580-591.
67.Mastretta, E., Longo, P., Laccisaglia, A., Balbo, L., Russo, R., Mazzaccara, A. & Gianino, P. (2002) Effect of Lactobacillus GG and breast-feeding in the prevention of rotavirus nosocomial infection. J Pediatr Gastroenterol Nutr 35:1046–1049.
68.Mead, P. S., Slutsker, L., Dietz, V., McCaig, L. F., Bresee, J. S., Shapiro, C., Griffin, P. M. & Tauxe, R. V. (1999) Food-related illness and death in the United States. Emerg Infect Dis 5: 607-625.
69.Meddings J.B. & Westergaard H. (1989) Intestinal glucose transport using perfused rat jejunum in vivo: model analysis and derivation of corrected kinetic constants. Clin Sci 76(4):403-13.
70.Menard, S., Candalh, C., Bambou, J. C., Terpend, K., Cerf-Bensussan, N. & Heyman, M. (2004) Lactic acid bacteria secrete metabolites retaining anti-inflammatory properties after intestinal transport. Gut 53: 821-828.
71.Michail, S., Sylvester, F., Fuchs, G. & Issenman, R. (2006) Clinical efficacy of probiotics: review of the evidence with focus on children. J Pediatr Gastroenterol Nutr 43: 550-557.
72.Miyoshi, J. & Takai, Y. (2005) Molecular perspective on tight-junction assembly and epithelial polarity. Adv Drug Deliv Rev 57: 815-855.
73.Muroi, M. & Tanamoto, K. (2002) The polysaccharide portion plays an indispensable role in Salmonella lipopolysaccharide-induced activation of NF-kappaB through human toll-like receptor 4. Infect Immun 70: 6043-6047.
74.Muza-Moons, M. M., Schneeberger, E. E. & Hecht, G. A. (2004) Enteropathogenic Escherichia coli infection leads to appearance of aberrant tight junctions strands in the lateral membrane of intestinal epithelial cells. Cell Microbiol 6: 783-793.
75.Neish, A. S. (2002) The gut microflora and intestinal epithelial cells: a continuing dialogue. Microbes Infect 4: 309-317.
76.Neish, A.S., Gewirtz, A.T., Zeng, H., Young, A.N., Hobert, M.E., Karmali, V., Rao, A.S. & Madara, J.L. (2000) Prokaryotic regulation of epithelial responses by inhibition of IkB–a ubiquitination. Science 289:1560–1563.
77.Nusrat, A., Turner, J. R. & Madara, J. L. (2000) Molecular physiology and pathophysiology of tight junctions. IV. Regulation of tight junctions by extracellular stimuli: nutrients, cytokines, and immune cells. Am J Physiol Gastrointest Liver Physiol 279: G851-857.
78.Otte, J. M. & Podolsky, D. K. (2004) Functional modulation of enterocytes by gram-positive and gram-negative microorganisms. Am J Physiol Gastrointest Liver Physiol 286: G613-626.
79.Pang, T., Bhutta, Z. A., Finlay, B. B. & Altwegg, M. (1995) Typhoid fever and other salmonellosis: a continuing challenge. Trends Microbiol 3: 253-255.
80.Parassol, N., Freitas, M., Thoreux, K., Dalmasso, G., Bourdet-Sicard, R. & Rampal, P. (2005) Lactobacillus casei DN-114 001 inhibits the increase in paracellular permeability of enteropathogenic Escherichia coli-infected T84 cells. Res Microbiol 156:256–262.
81.Park, E. J., Thomson, A. B. & Clandinin, M. T. (2010) Protection of intestinal occludin tight junction protein by dietary gangliosides in lipopolysaccharide-induced acute inflammation. J Pediatr Gastroenterol Nutr 50: 321-328.
82.Patel, R. M., Myers, L. S., Kurundkar, A. R., Maheshwari, A., Nusrat, A. & Lin, P. W. (2012) Probiotic bacteria induce maturation of intestinal claudin 3 expression and barrier function. Am J Pathol 180: 626-635.
83.Pinto, M., Robine-Leon, S., Appay, M. D., Kedinger, M., Triadou, N., Dussaulx, E., Lacroix, B., Simon-Assmann, P., Haffen, K., Fogh, J., Zweibaum, A. (1983) Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol. Cell 47: 323-330.
84.Popoff, M. Y., Bockemu‥hl, J. & Brenner, F. W. (2000) Supplement 1998 (no. 42) to the Kauffmann-White scheme. Res Microbiol 151:63–65.
85.Poppe, C., Smart, N., Khakhria, R., Johnson, W., Spika, J. & Prescott, J. (1998) Salmonella typhimurium DT104: a virulent and drug-resistant pathogen. Can Vet J 39: 559-565.
86.Qin, H., Zhang, Z., Hang, X. & Jiang, Y. (2009) L. plantarum prevents enteroinvasive Escherichia coli-induced tight junction proteins changes in intestinal epithelial cells. BMC Microbiol 9: 63.
87.Reid, G., Jass, J., Sebulsky, M. T. & McCormick, J. K. (2003) Potential uses of probiotics in clinical practice. Clin Microbiol Rev 16: 658-672.
88.Resta-Lenert, S. & Barrett, K. E. (2003) Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). Gut 52: 988-997.
89.Resta-Lenert, S. & Barrett, K. E. (2006) Probiotics and commensals reverse TNF-alpha and IFN-gamma-induced dysfunction in human intestinal epithelial cells. Gastroenterology 130:731–746.
90.Roselli, M., Finamore, A., Britti, M. S., Konstantinov, S. R., Smidt, H., de Vos, W. M. & Mengheri, E. (2007) The novel porcine Lactobacillus sobrius strain protects intestinal cells from enterotoxigenic Escherichia coli K88 infection and prevents membrane barrier damage. J Nutr 137: 2709-2716.
91.Rossi, M., Maurano, F., Luongo, D., Fasano, A., Uzzau, S., Auricchio, S. & Troncone, R. (2002) Zonula occludens toxin (Zot) interferes with the induction of nasal tolerance to gliadin. Immunol Lett 81: 217-221.
92.Santosa, S., Farnworth, E. & Jones, P. J. (2006) Probiotics and their potential health claims. Nutr Rev 64:265–274.
93.Sappington, P.L., Han, X., Yang, R., Delude, R.L. & Fink, M.P. (2003) Ethyl pyruvate ameliorates intestinal epithelial barrier dysfunction in endotoxemic mice and immunostimulated caco-2 enterocytic monolayers. J Pharmacol Exp Ther 304:464–76.
94.Schletter, J., Heine, H., Ulmer, A. J. & Rietschel, E. T. (1995) Molecular mechanisms of endotoxin activity. Arch Microbiol 164: 383-389.
95.Schultz, M., Linde, H., Staudner, H., Lehn, N., Falk, W. & Schoelmerich, J. (2000) Oral administration of Lactobacillus GG induces an anti-inflammatory, Th2 mediated systemic immune response towards intestinal organisms (abstr). Gastroenterology 118:A4180.
96.Servin, A. L. (2004) Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol Rev 28: 405-440.
97.Sherman, P. M., Johnson-Henry, K. C., Yeung, H., Ngo, P., Goulet, J. & Tompkins, T. A. (2005) Probiotics reduce enterohemorrhagic Escherichia coli O157:H7 and enteropathogenic E. coli O127:H6-induced changes in polarized T84 epithelial cell monolayers by reducing bacterial adhesion and cytoskeletal rearrangements. Infect Immun 73:5183–5188.
98.Sheth, P., Santos, N.D., Seth, A., LaRusso, N.F. & Rao, R.K. (2007) Lipopolysaccharide disrupts tight junctions in cholangiocyte monolayers by a c-Src-, TLR4-, and LBPdependent mechanism. Am J Physiol Gastrointest Liver Physiol 293: G308–G318.
99.Silva, M., Jacobus, N. V., Deneke, C. & Gorbach, S. L. (1987) Antimicrobial substance from a human Lactobacillus strain. Antimicrob Agents Chemother 31:1231–1233.
100.Simon, D.B., Lu, Y., Choate, K.A., Velazquez, H., Al-Sabban, E., Praga, M., Casari, G., Bettinelli, A., Colussi, G., Rodriguez-Soriano, J., McCredie, D., Milford, D., Sanjad, S. & Lifton, R.P. (1999) Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285(5354): 103–106.
101.Strober, W., Fuss, I. J. & Blumberg, R. S. (2002) The immunology of mucosal models of inflammation. Annu Rev Immunol 20: 495-549.
102.Su, L. H. & Chiu, C. H. (2007) Salmonella: clinical importance and evolution of nomenclature. Chang Gung Med J 30: 210-219.
103.Swaminathan, B., Barrett, T. J. & Fields, P. (2006) Surveillance for human Salmonella infections in the United States. J AOAC Int 89: 553-559.
104.Takahashi, M., Taguchi, H., Yamaguchi, H., Osaki, T., Komatsu, A. & Kamiya, S. (2004) The effect of probiotic treatment with Clostridium butyricum on enterohemorrhagic Escherichia coli O157:H7 infection in mice. FEMS Immunol Med Microbiol 41:219–226.
105.Talarico, T. L., & Dobrogosz, W. J. (1989) Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri. Antimicrob Agents Chemother 33:674–679.
106.Tauxe, R. V. & Pavia, A. T. (1998) Salmonellosis: nontyphoidal. In Bacterial infections of humans: epidemiology and control. Edited by: Evans, A.& Brachman P. New York: Plenum; pp613-628
107.Tlaskalova-Hogenova, H., Stepankova, R., Hudcovic, T., Tuckova, L., Cukrowska, B., Lodinova-Zadnikova, R., Kozakova, H., Rossmann, P., Bartova, J. et al. (2004) Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol Lett 93: 97-108.
108.Turner, J. R. (2009) Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9: 799-809.
109.Ulevitch, R. J. & Tobias, P. S. (1995) Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol 13: 437-457.
110.Ulevitch, R. J. (1999) Endotoxin opens the Tollgates to innate immunity. Nat Med 5: 144-145.
111.Ulluwishewa, D., Anderson, R. C., McNabb, W. C., Moughan, P. J., Wells, J. M. & Roy, N. C. (2011) Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr 141: 769-776.
112.Van Itallie, C.M., Holmes, J., Bridges, A., Gookin, J.L., Coccaro, M.R., Proctor, W., Colegio, O.R. & Anderson, J.M. (2008) The density of small tight junction pores varies among cell types and is increased by expression of claudin-2. J Cell Sci 121(3): 298–305.
113.Vandenbergh, P. A. (1993) Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiol Rev 12:221–238.
114.Vanderhoof, J.A., Whitney, D.B., Antonson, K.L., Hanner, T.L., Lupo, J.B. & Young, R.J. (1999) Lactobacillus GG in the prevention of antibiotic-associated diarrhea in children. J Pediatr 135:564–568.
115.Vescovo, M., Scolari, G. L., Caravaggi, L. & Bottazi, V. (1993) Antimicrobial compounds from Lactobacillus casei and Lactobacillus helveticus. New Microbiologica16(2):171–176.
116.Vincent, J. G., Veomett, R. C. & Riley, R. F. (1959) Antibacterial activity associated with Lactobacillus acidophilus. J Bacteriol 78:477–484.
117.Wang, F., Graham, W.V., Wang, Y., Witkowski, E.D., Schwarz, B.T. & Turner, J.R. (2005) Interferon-γ and tumour necrosis factor-α synergize to induce intestinal epithelial barrier dysfunction by upregulating myosin light chain kinase expression. Am J Pathol 166(2): 409–419.
118.Watson, C. J., Hoare, C. J., Garrod, D. R., Carlson, G. L. & Warhurst, G. (2005) Interferon-γ selectively increases epithelial permeability to large molecules by activating different populations of paracellular pores. J Cell Sci 118(22): 5221–5230.
119.Xiao, W. D., Chen, W., Sun, L. H., Wang, W. S., Zhou, S. W. & Yang, H. (2011) The protective effect of enteric glial cells on intestinal epithelial barrier function is enhanced by inhibiting inducible nitric oxide synthase activity under lipopolysaccharide stimulation. Mol Cell Neurosci 46: 527-534.
120.Yan, F., Cao, H., Cover, T. L., Whitehead, R., Washington, M. K. & Polk, D. B. (2007) Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 132:562–575.
121.Yeung CY, Chiang Chiau JS, Chan WT, Chiang CB, Cheng ML, Liu HL, Lee HC. (2013) In vitro prevention of Salmonella lipopolysaccharide-induced damages in epithelial barrier function by various Lactobacillus strains. Gastroenterol Research and Practice http://dx.doi.org/10.1155/2013/973209.
122.Zareie, M., Johnson-Henry, K. C., Jury, J., Yang, P.-C., Ngan, B.-Y., McKay, D. M., Perdue, M. H., Soderholm, J. D. & Sherman, P. M. (2006) Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic psychological stress. Gut 55:1553–1560.
123.Zhang, L., Li, N., des Robert, C., Fang, M., Liboni, K., McMahon, R., Caicedo, R. A. & Neu, J. (2006) Lactobacillus rhamnosus GG decreases lipopolysaccharide-induced systemic inflammation in a gastrostomy-fed infant rat model. J Pediatr Gastroenterol Nutr 42: 545-552.
124.Zyrek, A. A., Cichon, C., Helms, S., Enders, C., Sonnenborn, U. & Schmidt, M. A. (2007) Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKCzeta redistribution resulting in tight junction and epithelial barrier repair. Cell Microbiol 9: 804-816.
論文全文使用權限:同意授權於2016-08-20起公開